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1. Introduction

Roadway engineering and construction pre-date Roman times.  Over the centuries, standards in design
and construction and the documentation of practice have been raised to very high levels.  In the process
of modernizing and improving design, construction, and maintenance, new approaches and
technologies have been incorporated into civil engineering practice.  Initially, many of the new
technologies did not achieve the levels of reliability and standardization required by the civil
engineering profession.  Regrettably, many expert systems fall into this category, due partly to the lack
of verification, validation, and evaluation standards.

The goals of expert systems are usually more ambitious than those of conventional or algorithmic
programs.  They frequently perform not only as problem solvers but also as intelligent assistants and
training aids.  Expert systems have great potential for capturing the knowledge and experience of
current senior professionals and making the expert’s wisdom available to others in the form of training
aids or technical support tools.  Applications include design, operations, inspection, maintenance,
training, and many others.

In traditional software engineering, testing [verification, validation and evaluation (VV&E)] is claimed
to be an integral part of the design and development process.  However, in the field of expert systems,
there is little consensus on what testing is necessary or how to perform it.  Further, many of the
procedures that have been developed are so poorly documented that it is difficult, if not impossible, for
them to be reproduced by anyone other than the originator.  Also, many procedures used for VV&E
were designed to be specific to the particular domain in which they were introduced.  The complexity
and uncertainty related to these tasks has led to a situation where most expert systems are not
adequately tested.

Impelled by the existing environment of lack of consensus among experts and inadequate procedures
and tools, the FHWA developed this guideline for expert system verification, validation, and evalua-
tion, complete with software to implement recommended techniques.  The guideline is needed because
knowledge engineers today do not often design and carry out rigorous test plans for expert systems.
The software is necessary because real-world knowledge bases containing hundreds of rules and
dozens of  variables are difficult for humans to assimilate and evaluate.  Computerized verification and
validation (V&V) tools would also enable the knowledge engineer to use interim V&V reports to
guide knowledge acquisition and coding, something that is too labor-intensive with hand methods.  The
techniques presented represent a workable solution to a difficult problem.  Hopefully they also provide
a basis for further enhancements and improvements.

Basic Definitions

This guide covers verification, validation, and evaluation of expert systems.  An expert system is a
computer program that includes a representation of the experience, knowledge, and reasoning
processes of an expert.  Figure 5.1 shows a six rule expert system that will be used as an example
throughout this guide.
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Verification of an expert system, or any computer system for that matter, is the task of determining
that the system is built according to its specifications.  Validation is the process of determining that the
system actually fulfills the purpose for which it was intended.  Evaluation reflects the acceptance of the
system by the end users and its performance in the field.  In other words (Miskell et al, 1989):

• Verify to show the system is built right.
• Validate to show the right system was built.
• Evaluate to show the usefulness of the system.

Verification

As stated above, verification asks the question "is the system built right?," i.e., verification is checking
that the knowledge base is complete and that the inference engine can properly manipulate this
information.  Issues raised during verification include:

• Does the design reflect the requirements?  Are all of the issues contained in the requirements
addressed in the design?

• Does the detailed design reflect the design goals?
• Does the code accurately reflect the detailed design?
• Is the code correct with respect to the language syntax?

When the program has been verified, it is assured that there are no "bugs" or technical errors.

Validation

Validation answers the question "is it the right system?” “is the knowledge base correct?" or "is the
program doing the job it was intended to do?"  Thus, validation is the determination that the completed
expert system performs the functions in the requirements specification and is usable for the intended
purposes.  It is impossible to have an absolute guarantee that a program satisfies its specification, only a
degree of confidence that a program is valid can be obtained.  Issues addressed during validation of an
expert system include:
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• How well do inferences made compare with knowledge and heuristics of experts in the field?
• How well do inferences made compare with historic (known) data?
• What fraction of pertinent empirical observations can be simulated by the system?
• What fraction of model predictions are empirically correct?
• What fraction of the system parameters does the model attempt to mimic?

Evaluation

Evaluation addresses the issue "is the system valuable?"  This is reflected by the acceptance of the
system by its end users and the performance of the system in its application.  Pertinent issues in
evaluation are:

• Is the system user friendly, and do the users accept the system?
• Does the expert system offer an improvement over the practices it is intended to supplement?
• Is the system useful as a training tool?
• Is the system maintainable by other than the developers?

To illustrate the difference, the task might be to build a system that computes the serviceability
coefficient of pavement.  The specifications for the system are contained in textbooks that define the
coefficient.  To validate the system one must test the serviceability of the program on examples in the
texts and other test cases and compare the results of the program with independently computed
coefficients for the same examples.  It is important to use a test set that covers all the important cases
and contains enough examples to make sure that correct results are not just anomalies.

Once the system is validated, the next step is to verify it.  This involves completeness and consistency
checks and examining for technical correctness using techniques such as are described in this
handbook.  The final step is evaluation.  For the serviceability program, this means giving the system to
engineers to use in computing the coefficient.  Although the system is known to produce the correct
result, it could fail the evaluation because it is too cumbersome to use, requires data that are not readily
available, does not really save any effort, does something that can be estimated accurately enough
without a computer, solves a problem rarely needed in practice, or produces a result not universally
accepted because different people define the coefficient in different ways.

Need for V&V

It is very important to verify and validate expert systems as well as all other software.  When software
is part of a machine or structure that can cause death or serious injury, V&V is especially critical.  In
fact, there have already been failures of expert systems and other software that have resulted in death.
For example, a robotized overhead material mover struck an overhead crane at an Alcoa aluminum
plant, killing the crane operator, because its narrow-field vision system saw only an interior region of
the crane front, a blank field to the robot. In another case, a much-patched system for cancer radiation
treatment gave a fatal dose to at least one patient, because the operator overrode the emergency stop;
it had given repeated false alarms in past situations.
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Expert systems use computational techniques that involve making guesses, just as human experts do.
Like human experts, the expert system will be wrong some of the time, even if the expert system
contains no errors.  The knowledge on which the expert system is based, even if it is the best available,
does not completely predict what will happen.  For this reason alone, it is important for the human
expert to validate that the advice being given by the expert system is sound.  This is especially critical
when the expert system will be used by persons with less expertise than the expert, who can not
themselves judge the accuracy of the advice from the expert system.

In addition to mistakes which an expert system will make because the available knowledge is not
sufficient for prediction in every case, expert systems contain only a limited amount of knowledge
concentrated in carefully defined knowledge areas.  Today's expert systems have no common sense
knowledge.  They only "know" exactly what has been put into their knowledge bases.  There is no
underlying truth or fact structure to which it can turn in cases of ambiguity.  This means that an expert
system containing some errors in its knowledge base can make mistakes that would seem ridiculous to
a human, and not realize that a mistake had occurred.  [On the other hand, expert systems do not get
tired or sick or bored or fall in love, and therefore avoid some of the "careless" mistakes that a person
might make, particularly on repetitive problems.]  If the expert system does not realize its mistake, and
it is being used by a person with limited expertise, there is nobody to detect the error.  Therefore,
where the expert system is going to be used by someone without expertise, and the decisions made
have the potential for harm if made badly, the very best effort at verification and validation is required.

Problems in Implementing Verification, Validation, and Evaluation for Expert
Systems

One of the impediments to a successful V&V effort for expert systems is the nature of expert systems
themselves.  Expert systems are often employed for working with incomplete or uncertain information
or "ill structured"  situations (Giarratano and Riley, 1989).  These are cases where, as in a diagnostic
expert system, not all symptoms for all malfunctions are known in advance.  In these situations,
reasoning offers the only hope for a good solution.  Since expert system specifications often do not
provide a precise criterion against which to test, there is a problem in verifying, validating, and
evaluating expert systems according to the definitions in section 1.  For example, specifying that a
speech recognition system should understand speech does not define a testable standard for the system.
Some vagueness in the specifications for expert systems is unavoidable; if there are precise enough
specifications for a system, it may be more effective to design the system using conventional
programming languages.

Another problem in VV&E for expert systems is that expert system languages are not structured to
accommodate the relatively unstructured applications.  However, rigid structure in implementing the
code is a key technique used in writing verifiable code, such as the Cleanroom approach.

Cleanroom software specification (Linger, 1993) begins with a specification of required system
behavior and architecture.  Many expert systems cannot conform to the rigidity required by this quality
control method used principally for conventional programming.
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Intended Audiences for the Handbook

The following table describes the intended audiences for the handbook, and the parts of the handbook
that will be most useful to these audiences:

Table 1-1:  Intended Audiences for the Handbook
Audience Task to be Performed Part of Handbook
Managers Manage expert system project Chp. 1:  Introduction

Chp. 3:  Planning And Management

Knowledge Engineers Build new expert systems Chp. 4:  Developing a Verifiable System
Chp. 7:  Knowledge Modeling
Chp. 9:  Validating Undelying Knowledge

Knowledge Engineers Perform VV&E on existing
systems

Chp. 5:  The Basic Proof  Method
Chp. 6:  Finding Partitions without Expert Knowledge
Chp. 8:  VV&E for Small Systems
Chp. 9:  Validating Undelying Knowledge

Highway Engineers Ensure that a correct new expert
system is built

Chp. 3:  VV&E on New Systems
Chp. 10:  Testing
Chp. 11:  Evaluation & Manag. Issues

Highway Engineers Ensure that an existing expert
system has been validated

Chp. 3:  VV&E on Existing Systems
Chp. 10:  Testing
Chp. 11: Evaluation & Manag. Issues

Software Researchers Critique and extend VV&E
methods

Chp. 2:  V&V: Past Practice
Chp. 6:  Finding Partitions without Expert Knowledge
Chp. 7:  Knowledge Modeling
Chp. 8:  VV&E for Small Systems
Chp. 9:  Validating Undelying Knowledge
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2. Planning and Management

The purpose of this chapter is to provide guidance on planning and decision making early in an expert
systems project.  This concept applies not only to new developments, but to improved  thinking and
decision making at any stage from development through implementation.  This includes planning the
verification, validation, and evaluation of an already developed system.  The advice given here should
aid in developing clear problem definition and thorough system requirements, reflecting realism from
both technical and organizational viewpoints.  Risk identification information is also provided.

Introduction

The development, testing and evaluation of an expert system is a demanding process.  It is critical in
the planning stages that the necessary resources are secured and that the proper development team is
assembled.  Both the successes and failures in the development of expert systems can usually be traced
back to the planning phase of development.  The following are important elements of a successful
expert system development program:

• Management support in the institution sponsoring the development of the expert system is
necessary.  This support must include the commitment of both staff and financial resources needed
to successfully develop and implement the system.

• The goal of the expert system and the exact uses of the end product must be clearly defined and
understood by all involved from executive management to end users.  Full knowledge and
understanding of the costs and risks involved are also essential.

• Recognized experts in the appropriate technical fields must be available and have sufficient time
committed to the expert system development project.

• Influential advocate(s) of the system are essential.  Ideally, there should be advocates from both the
technical development area and the end user community.

• The end users are pivotal to the development of expert systems and must be involved from the
planning through the field evaluation stages.  The end users provide definition of the skill level of
the user community, information on how problems are addressed in practice versus the prescribed
solutions, advice on how the system must function (interact with the user) to be  accepted by the
user community, and a cadre of supporters to test and promote the system once it is completed.
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• Structured planning is recommended for the successful development of a system.  This should
include the problem/need to be addressed and the system benefits, organizational risk factors,
technical risk factors, and user risk factors.  Development milestones must be identified and the
system demonstrated at each milestone.

• Knowledge elicitation from the experts is vital throughout the duration of the expert system
development.  It is vital both in terms of building the system and for maintaining interest and
continuity throughout the project.

• The verification, validation, and evaluation must be considered in all phases of the system
development.  Since some aspects of the verification, validation, and evaluation may not be
performed by the developers, it is critical that VV&E plans be clearly identified and documented.

• Maintainability must be considered in all phases of the system development.  Since the maintenance
will probably not be performed by the developers, the system structure must be clear and
straightforward.  Logical and understandable names should be used for objects and knowledge
structures within the system.  Clear and complete system documentation is required for effective
maintenance.

• The selection of the development tool for an expert system project should be performed by a
qualified knowledge engineer or expert systems developer.  This is critical because there are
significant differences among the development tools.  These differences are not explained in
available literature and the application should dictate the selection of the development tool with its
specific knowledge handling and operational characteristics.

Figure 2-1 shows the initial project planning process.  This process can be applied to either a new
development of the VV&E for an existing (but not adequately tested) system, or an existing system.

     

• Problem Definition
• Input for:
- Specific Customer

Requirements
- Project Plan (including

put falls;...)
Explain Why to Proceed -------

Problem/ Need Id. Potential Sol’n. E. Cost/ Benefits
Organiz.

Fail

Technic.
Users PROCEED

Start

Figure 2-1:  Initial Project Planning

Identify the Need for an Expert System

Before an expert system can be developed, the need has to be established and the problem to be
addressed must be clearly identified and defined.  It is strongly recommended that this be done in a
structured study to include the following issues (Wentworth 1989):
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• The problem/need to be addressed and the system benefits.
• Organizational risk factors.
• Technical risk factors.
• User risk factors.

NOTE:  The term risk factors is used in deference to the old adage "if it can go wrong, it will
go wrong."  The risk factors represent areas where it "will go wrong" if there is any deficiency
in planning and common sense.

Once a suitable problem domain has been defined for the expert system, the next task is to narrow the
scope of the development effort by clearly defining the set of problems that the system will be expected
to solve.  The narrower the scope, the better are the chances that the expert system can be successfully
built.  However, if the scope is too narrow, the application becomes trivial.  Judgment must be used in
establishing the scope of the system as deterministic methods are not available.  In general, it is better
to err on the side of too narrow a scope rather than on too broad a scope.  If the scope ultimately turns
out to be too narrow, it may be relatively easy to broaden the scope by adding more knowledge to the
knowledge base.  However, if the development tool is too limited, it will be impossible to broaden the
scope of the expert system by expanding the knowledge base.  This highlights the importance of
selecting the proper development tool to fit the particular problem.

Prior to embarking upon an expert system development effort, the expected benefits of such an effort
must be clearly defined.  There are two categories of benefits that are typically cited as reasons for
developing an expert system.  One category consists of concrete, quantifiable reasons such as savings
of time and money, utility as a training tool, etc.  The other category of benefits consists of tangible but
not quantifiable reasons.  Specifically, the process of developing an expert system will formalize and
document the knowledge in a given problem domain, or combine and formalize the expertise from
many experts in a given domain.  This will result in expanded knowledge and better problem solving
techniques in the domain, and provide a mechanism for giving this knowledge wide distribution to the
users.

 Under the heading of the problem/need to be addressed and system benefits, the following should be
accomplished:
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• The problem or need must be clearly identified and documented.
• The probability of the expert system resolving this problem or need must be described and

quantified.
• The application or the output and the use of the output must be clearly defined .
• If standardization of results is desirable, the degree to which the expert system will improve

standardization must be estimated.
• The use of the expert system to improve conditions by improving quality of results must be

estimated.
• The expected utility of the expert system as a training tool must be described.
• End user involvement for the duration of the development process must be assured.
• Time and money savings based on the projected use of the expert system must be estimated.

Under organizational risk factors, suggested requirements and considerations are:

• There must be a dedicated and influential advocate who wants the system to be a success.
• There must be management support for the financial support, staff and time required to build the

expert system.
• Management must have realistic expectations regarding the difficulty in developing the expert

system.
• Management must have realistic expectations regarding the performance of the developed system.
• The results of the expert system must be applied without excessive management approvals being

required.

Once a problem domain has been identified and the initial effort at narrowing the scope of the expert
system application completed, the expert(s) whose expertise will be modeled must be selected.

The two main criteria that should be used to identify the expert(s) are:

1. The candidate(s) must be an expert in solving problems in the problem domain of interest and must
be recognized as such by the potential user community.  The need for the candidate to be an expert
in the field is essential for the development of the expert system.  The need for the expert to be
recognized as such by the potential user community is primarily useful in selling the potential users
on the viability of the given system as a useful problem solving tool for them.

2. The expert(s) must be dedicated to the successful development, testing, evaluation, and
implementation of the system and be available and willing to spend the time (perhaps months) that
will be required to accomplish this.  The failure to identify such a person or persons and obtain a
firm commitment means that the development project should not be undertaken.

Other useful characteristics for the domain expert(s) to have include the ability to communicate
effectively, have an orderly mind, patience and the willingness to teach.
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In evaluating technical risk factors, the following should be included:

• There must be recognized experts in the field along with general agreement among these experts
on the knowledge required to solve the problem the expert system is being developed to address.

• The development team must be identified and arrangements made to assure their dedication to the
development and follow-up processes.  The availability and personal commitment of all team
members must be assured.

• The availability of a manual or automated procedure to be used as a model for the development of
the expert system should be considered.

• The required performance of the expert system must be defined (in terms of finding the best
solution as compared to senior experts).  Unrealistic expectations must be avoided.

• Ambiguity in specifications must be avoided, or if ambiguity does exist, the specifications must be
modified to avoid it.

• The scope and range of problems to be addressed by the expert system must be clearly identified.
• Interaction with external programs to run algorithmic routines or for data entry, etc., must be

identified.

User risk factors must be considered and resolved in the initial planning phases of the expert system
development.  If representative end users are not involved in the planning and development stages, the
system probably will not be accepted by the user community.  Issues include:

• The end users must want the system and have a vested interest in its success.
• The computer proficiency and other skills and interests of the end users must be accommodated.
• The environment or conditions under which the system will be operated must be accounted for.

The Development Team

There are four categories of participants involved in the expert system building process.  These are the
advocate who champions the building of the expert system, the end users of the expert system, the
domain expert(s) whose problem-solving expertise is to be modeled, and the knowledge engineer who
actually builds the system.  Although in the process of building a given expert system the same person
may at various stages of development take on different roles, it is important to recognize that these
roles are distinct.

The role of the advocate who champions the development of the expert system is to:
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• Identify the need for the system.
• Define the problem domain.
• Identify the intended user community.
• Define the expected benefits that will accrue to the intended audience using the expert system.
• Identify the expert(s) whose expertise will be modeled.
• Choose the knowledge engineer who will develop the system.
• Maintain (or plan for the maintenance of) the finished product.
• Plan and chaperon the entire development process.

The end user is critical in the development of an expert system and must be involved in the entire
development process. The end user provides:

• Definition of the skill level of the user community.
• Information on how problems are addressed in the field versus the prescribed solutions.
• Advice on how the system must function (interact with the user) to be accepted by the intended

users.
• A cadre of supporters to test and promote the expert system once it is completed.

The domain expert has a dual role in the expert system development process. First, the expert's
problem-solving ability serves as the model for the expert system.  Second, the expert must assist in
quality control on the project and make certain that the expert system faithfully represents a useful
portion of the expert's knowledge.  In essence, the expert must take some responsibility for ensuring
that the expert system faithfully models his expertise.  The expert's major task in fulfilling this
responsibility is to assist in the design of a comprehensive set of test problems for use in verifying that
the expert system actually works.

The knowledge engineer has the task of developing a faithful model of the expert's problem solving
ability in the domain of interest.  Other tasks which the knowledge engineer must perform are:

• Implement the model of the expert's knowledge.
• Ensure that the implementation is as transparent as possible.
• Document the expert system.
• Test the expert system.

One individual may perform more than one of these functions; however, the end users and their tasks
should remain autonomous.  If the roles of the domain expert and the knowledge engineer are
combined, a second domain expert should review and confirm the technical findings.

The Test /Evaluation Team

The same four categories of participants involved in expert system verification, validation, and
evaluation are involved in the building of the system.  However, their roles have changed in some
aspects.  These are the advocates who champion the building of the expert system, the end users of the
expert system, the domain expert(s) whose problem-solving expertise is to be modeled, and the
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knowledge engineer who actually builds the system.  Although in the process of building a given expert
system the same person may at various stages of development take on different roles, it is important to
recognize that these roles are distinct.

The role of the advocate who champions the expert system is to:

• Identify the need for system robustness and usefulness.
• Define the problem domain for testing.
• Identify the intended user community.
• Define the expected benefits that will accrue to the testers of the expert system.
• Identify the sites where testing will be conducted.

The end user is critical and must be involved in the entire process from development through
implementation.  The end user provides:

• Access to a cadre of supporters to test and promote the expert system.
• Information on how problems are addressed in the field versus the prescribed solutions and

knowledge on how to "fix" problems on the fly.
• Advice on how the system must function, i.e. interact with the user, to be accepted by the intended

users.

The domain expert has a dual role in the expert system development process. First, the expert's
problem-solving ability serves as the model for the expert system.  Second, the expert must assist in
quality control on the project and make certain that the expert system faithfully represents a useful
portion of the expert's knowledge.  In essence, the expert must take some responsibility for ensuring
that the system faithfully models his expertise.  The expert's major task in fulfilling this responsibility is
to assist in the design of a comprehensive set of test problems for use in verifying that the system
actually works.

The knowledge engineer has the task of developing a faithful model of the expert's problem solving
ability in the domain of interest.  Other tasks which the knowledge engineer must perform are:

• Implement the model of the expert's knowledge.
• Ensure that the implementation is as transparent as possible.
• Document the expert system.
• Test the expert system.

One individual may perform more than one of these functions; however, the function of the end users
should remain autonomous.  If the roles of the domain expert and the knowledge engineer are
combined, a second domain expert should review and confirm the technical findings.

Systems Development Milestones

In developing expert systems a series of development milestones should be used to measure progress
and to provide a series of “go/no-go” decision points.  These milestones should each represent stages
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of development that would provide an improvement in the state-of-the-practice and points where a
formal decision by top management to proceed with the development should be made.  It is the
responsibility of the development advocate to provide criteria for these decisions and to gain
management approval of these formal criteria during the planning of the expert systems development.

As an example of this philosophy the following example is provided:

 Situation:
A regulatory unit has 2500 paragraphs of regulation to manage.  There are about 100 queries per
month to these regulations and by mandate responses must be provided in five working days.  Files of
previous responses are scattered between file cabinets, cardboard boxes and the memory of five
remaining experts (all approaching retirement) who know the purpose and the history of the regulatios.

Solutions:
Build an expert system to capture the knowledge of the five remaining experts and to manage the
responses to inquiries.

Analysis/Recommendations:
The solution souds wonderful and could even be made to work, but competent and thorough planning
and management are required.  It should never be assumed that an expert system is the logical answer;
an expert system is only a tool and should be evaluated along with other possible approaches.  The
system shuld be constructed in the following stages:
1. Organize the existing files
2. Develop a system to categorize inquiries
3. Identify typical responses to each category of inquiries
4. Develop a scanning system to automate the reading of inquiries
5. Develp a preliminary response letter based on steps 2,3 and 4
6. Perform VV&E on the developed system
Note that at the end of step 6 a fully developed and tested system will be in place.  Also the term
“expert system” was not used although in all likelihood an expert system was the abvious tool to use in
steps 2,3,4 and 5.  Each step represented a clear improvement in the state-of-the-practice and for each
step logical “go/no-go” criteria could be prepared during the planning stage of the project.

Figure 2.1.1:  System Development Milestones Example
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• The Problem is the
lack of readily
available investment
advisors.

• 1-800 #s.
• Investment books.
• ...
• E.S.

• A system that is relatively
cheap to build.

• The number of potential
users is very high.

Problem/ Need Id. Potential Sol’n. E. Cost/ Benefits
Organiz.

Technic.
UsersStart

1

2

3

• Unrealistic management
expectation, i.e., Nobody
know how to predict
investment strategies so
build an E.S. to do that.

• Difficulty to build the system:
talk to an investment expert
to evaluate & scope out the
difficulty in building the E.S.

1

• Do the users have a vested
interest in the E.S. (do they
want it)?

= NO*
YES**

• Do they use computers?

3

• There are no recognized experts that
can predict a good investment
strategy in today’s economy.*

• Required level of performance:
– No risks for loss of life.
– The system is not automatic; the

user can decide not to follow the
advice.

~ The RLF doesn’t have to be very
high.

2

*This is a good example of why not to go ahead with the system or explaining why to proceed in spite of the big risk.
**Good reasons to proceed.

Figure 2.1.2:  KB1 Initial Project Planning
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3. Developing a Verifiable System

This chapter delineates how VV&E should be incorporated into the expert system lifecycle.  Although
some ideas may be used for revising and/or reengineering existing systems, this chapter is aimed mainly
at designing new systems and ensuring that enough VV&E operations are done during the lifecycle so
that these systems are verifiable.  Included in this process are decisions that should be made during
system specification and verification/validation during stepwise  development of an expert system.

Introduction

The proposed lifecycle for the development of expert systems is a compilation of concepts taken from
many sources including lifecycle, cleanroom, ect.  The compiled system was organized and enhanced
based on the experience of its developers to generate a basis for the development of “verifiable”
systems.  Even though the system allows for some flexibility in the degree of application of each of the
system’s components, the general outline has to be followed rigorously in order to achieve the
objective outlined above.

The Concept:  Figure 3.1. outlines the general concept for the development of a verifiable system.  It
includes the following stages:

Specification:  This step is indispensable in the VV&E process.

Stepwise Development Process:  This is one of the methods for the development process; other
software development methods can be used as long as they include enough structure and verification
steps.

Design (1):  Start by designing the main parts of the expert system.

Verify (1):  Verify that the design complies with the specification.

Implement (1):  Implement (code) the first increment.

Verify (1):  Verify that the implemented code complies with the design.

Design - Verify - Implement - Verify (2 to n):  Loop through the entire process for the 2nd, 
3rd, ... nth level until the entire system is complete.
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Single Source Document for all
Structure Design & Validation
of Requirements Implementation

•Problem Definition
•Population of Problems the System
is Supposed to Solve

• Definition of “Correct” Problem Solution
• Required Level of Performance
• Use of “Formal” Specification Methods

(box structure methodolgy)
• Knowledge Illustration
• User Involvement

SPECIFICATION

• Correctness • Completeness • Stability

STEP-WISE REFINEMENT DEVELOPMENT

2,...n increment

Correctness:
Equivalence Between

Requirements & Design

CORRECTNESS
VERIFICATION
(Team Reviews)

(pass)

NO

YES

Correctness:
Equivalence Between
Design & Implementation

YES

NO

CORRECTNESS
VERIFICATION
(Team Reviews)

(pass)

• First Increment

Rigorous & Formal Design Based
on Structured Programing Theory

• Design Logic
• Software Structure
• Knowledge Representation
• Organization of Structural Data

DESIGN
structural design

Executable Rules; Objects;
Procedures

IMPLEMENTATION

TESTING

Figure 3.1:  Developing a Verifiable System
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Specification

The goal of this stage is to develop the system’s specification.

input: software specific customer requirements.
output: software functional and performance requirements.

The Importance of Specifications

Specifications are important for VV&E.  As noted in the introduction, verification determines if a
system meets its specifications; this is meaningless if there are no specifications.  Validation determines
if a system does what is needed; this is only possible if it has been decided what a system is supposed to
do.  The results of these decisions are specifications.

At the specification stage the emphasis is on producing a clear identification of:

• What is to be produced?
• When to produce it?
• What are the resources required?

The issue is to find a trade-off between the requirements specification (client) and the resources (time
and money).  The use of formal approaches (formal notation i.e., the Structured Analysis [SA; De
Marco 1978], the Software Requirements Engineering Methodology [SREM; Alford 1978], the
Structured Analysis and Design Technique [SADT; a trademark of SofTech],) proved to be very useful
in this process.  This is especially important to the V&V task because of the clarification provided by
the use of these methods.

Functional Specification (FS):  Specification of functions to be performed by the system and the
constraints within which it must work.

Acceptance Test Specification:  Test definition:
• Who will perform the test(s)?
• When (at what point)?
• How do we insure that the system behaves according to the FS ?
• Include V&V Techniques to be used and when (at which time).

In addition to the above mentioned items, the following items should also be addressed:

• A clear definition of the population of problems the expert system is supposed to solve.
• A provision of  test and development samples.
• The required level of performance.
• A clear definition of what constitutes a correct problem solution verification:

• Is it possible to collect inputs that could possibly solve the problem?

• Is it possible to compute the proposed output from the input validation?
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• Can the experts certify that the specifications, if properly implemented, would solve the evaluation
problem?
• Can experts judge that the system is worth the probable cost?

• Can experts judge that the system would be useful in practice?

• Is it possible to build a system that could be integrated with other components as necessary?

The General Form of Specifications

For the formal proof techniques presented in the following chapters, it is useful to have a general
representation of a specification.  Most specifications are based on the following form:

For some subset S of the input space of an expert system, and
for all X in S,
the output of the system satisfies some proposition P.

Defining Specifications

It is particularly important to define specifications for the critical cases the expert system may
encounter.  A critical case for an expert system is a set or range of input data on which failure of the
expert system to perform correctly causes an unacceptable, perhaps catastrophic, failure of the system
of which the expert system is a part.

There are several steps in defining and verifying specifications for an expert system:

• Gather informal requirements from experts, with particular attention to defining the critical cases.
• Obtain expert certification of the specifications.
• Validate informal descriptions of the specifications with experts.
• Validate the translation of informal specifications into the formal notation used in the knowledge

base.
• Validate the formal statement of the requirements using symbolic evaluation.

Each step is detailed in a section below, with particular attention to critical cases.

Gather Informal Descriptions of Specifications

The first step in verifying specifications is to gather a complete set of requirements. Only the domain
expert(s) can provide this list.  Ideally, during the original knowledge acquisition phase for the expert
system, the knowledge engineer gathered, documented, and validated the critical cases.  If the
informally stated requirements are not available, however, gathering them is the first necessary step in
verifying the correctness of an expert system.

Typically, to gather the critical cases, the knowledge engineer should ask the domain expert(s) to list
critical cases, and to keep a careful record of them.  As with most knowledge acquisition tasks, it is
important to ask for the following information:
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• General principles, e.g. "What are the critical performance requirements for this expert system?"
• Specific projects, and the critical performance requirements found in those projects.  To get this

information, the knowledge engineer should ask the expert(s) to tell him about their projects and
experiences that are within the scope of the knowledge base.  The purpose of this is that by
reviewing the specific projects the expert’s memory will be spur. This process  will help the
engineer to decide what the critical cases really are.

In gathering a set of critical cases, it is important to let the domain experts describe critical cases in
their own words and notation, not in the notation of the expert system.  This is because the expert
system may have missed a critical variable that may be needed to recognize a critical case.  If the
knowledge engineer asks the expert to verify knowledge base gobbledygook, the expert may become
too distracted to think of a critical case not described with the incomplete set of variables used in the
incomplete knowledge base.

Obtain Expert Certification of the Specifications

It is important that the knowledge engineer impel the expert(s) to certify the specifications,  especially
those concerning the critical cases.  This is a vital step in the process because the expert system will be
built to meet and tested against the specifications.  If the specifications are in error, the expert system
will almost surely fail to perform properly.

In order to obtain meaningful certification of the specifications, the knowledge engineer must make
sure that the expert focuses on a careful review of the specifications.  Among the ways to obtain this
focus are:

• Have a group of experts reach consensus on the specifications, with the knowledge engineer
functioning as a moderator.  In this role, the engineer will:
• Be familiar with the ongoing discussion, and in addition, will be in a position to solicit

important issues that must be resolved.

• Ensure that the experts address those issues and reach an agreement.

• Have the expert(s) sign off on the specifications.

Validating Informal Descriptions of Specifications

For systems where correct performance is critical, the next step in validating specifications of the
expert system is to validate the informal descriptions of critical cases.  The basic method for validation
is that of cultural consensus, described in the chapter, "Validating Expert Knowledge.”  In this method,
experts, ideally those who have not provided the specifications, are used to validate the correctness of
those specifications.

There are two questions that should be asked concerning the informal list of critical cases to validate: is
the set of critical cases complete, and are the critical cases correct?  To validate completeness, the
knowledge engineer should conduct interviews with experts who have not contributed to the critical
case list.  This interview is similar to the one used to gather the list of critical cases, with one additional
step:  at the end of the interview, ask the expert to certify not just the critical cases the expert
proposed, but the entire list of critical cases gathered so far, including those that were added during the
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interview.  After additional experts no longer provide new critical cases, the entire list gathered has
been validated to a confidence level depending on the number of experts who certify the list.  Chapter
9, "Validating Underlying Knowledge", discusses these confidence levels in more detail.

Validating the Translation of Informal Descriptions

To validate the critical cases, the informal descriptions must be translated into formal statements in the
language of the knowledge base.  The goal of this translation is to produce statements of the form:

if H1 and H2 ...  and Hn then C1 and C2...and Cn.

The H’s should be stated in terms of input variables of the expert system, and the C’s should be
possible conclusions of the expert system.

The translation into a knowledge base language is a process that can introduce errors.  For example,
for Knowledge Base 1 a critical case in the informal language of an expert might be, "If the client
doesn't have a lot of money, he/she should first build a savings account.”  The closest that one can
come to expressing this in the language of Knowledge Base 1 is:

If "Discretionary income exists" = no
then investment = "bank account".

A financial planner would probably consider "Discretionary income exists" an inadequate translation of
"the client doesn't have a lot of money"; Knowledge Base 1 does not even ask about existing savings or
most other assets.

As this example illustrates, the translation of expert knowledge into the formal knowledge language of
an expert system is one of the tasks where errors can creep into the expert system.  To have a truly
validated expert system, the translation has to be validated.  Although this is rarely done, items can be
created for validation as follows:

• Is <expert's statement of a critical case>
• equivalent to <the same critical case in the knowledge language>

These items form the basis for a cultural consensus test for a set of knowledge engineers (see chapter 9
"Validating Underlying Knowledge").  When asking knowledge engineers to validate the translation of
critical cases, it is important to:

• Use knowledge engineers who have not built the knowledge base.
• Give the validating knowledge engineers the opportunity to familiarize themselves with the

knowledge language before examining the individual items.

In translating the informal requirements into formal knowledge base statements, there are some typical
kinds of errors, as discussed below:
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• False negatives in the input variables:  One problem in knowledge translation results from the fact
that a symptom is often used in a knowledge base to stand for an underlying condition; in the above
example, for example, "no discretionary income" stands for "has no money.”  However, few
observations are 100 percent reliable.  If a single symptom is used to test for a condition in a
knowledge base, a false negative of that symptom will produce an error in what the expert system
does.

The solution to the false negative problem is to separate symptoms and underlying conditions in the
knowledge base.  If C is a condition, the knowledge base should contain a rule of the form:

if S1 or S2 or ... Sn then C (Rule C).

Where S1 through Sn are a set of symptoms such that the probability of false negatives in all the S’s Is
less than some agreed-on threshold.  Outside of Rule C, and similar condition-inferring rules, the S’s
should not appear when a condition (i.e., C) is intended.  Therefore, every occurrence of an S outside
of a condition-inferring rule should be validated by expert(s).

In the case where a single symptom has such low false negatives that it identifies C by itself below the
acceptable error threshold, it is unnecessary to separate the symptom and condition in the knowledge
base:

• Missing input variables: An expert learns to observe many symptoms of possible problems.  An
expert system may use only a small number of variables.  Whether the small number of variables is
adequate is a matter that experts must validate.  It is important to ask experts what data they gather
in looking at problems covered by the knowledge base.  If the expert looks at more than the expert
system, for example variable X, then:

Can the expert get along without <variable X>

is a knowledge item that should be validated (see chapter 9).

Validation of Formalized Requirements

At this point, the critical cases have been transformed into a set of statements of the form:

if H1 and H2 and ... and Hn then C1 and ... Cm(name: f1).

Formal verification methods for specifications in this form are discussed in the chapters on knowledge
modeling and verification techniques for small systems.

Figure 3.2 outlines the steps to be considered at the specification stage and figure 3.2.1 shows their
implementation to knowledge base 1.

Other Issues to be addressed at this stage:
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• Project Plan:  Breakdown of the work; manpower figures, milestones, ect.
• Quality Management Plan:  Quality Control.

Single Source Document for all
Structure Design & Validation
of Requirements Implementation

•Problem Definition
•Population of Problems the System is
Supposed to Solve

• Definition of “Correct” Problem Solution
• Required Level of Performance
• Use of “Formal” Specification Methods (box

structure methodolgy)
• Knowledge Illustration
• User Involvement

SPECIFICATION

• Correctness • Completeness • Stability

Specs
Complete

Exploratory
Research

(i.e., prototype)

STEP-WISE REFINEMENT DEVELOPMENT

Figure 3.2:  Specification
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Problem Definition:
• The lack of readily available investment advice.
• Develop a system that will advise the user on investment strategies.
Population of Problems the System is supposed to solve:
• Investment advice to people with less than $ 1 Million to invest.
Definition of Correct Problem Solution:
• An investment strategy is always suggested.
• Proposed solution should be affordable
• The investor is comfortable with the advise.
Required level of performance:
• As good as 70% of the expert(s)  [Define:  good 70% of the time or 70% as good all the time].
• The system should always recommend an affordable investment even if it has to be a conservative

one.

Note:  Knowledge Acquisition  & User Involvement:

Figure 3.2.1:  KB1 Specification

Step-Wise Refinement Development

At this stage, a mapping of the system functions (from FS) into software components will occur and
the overall System Structure (Architecture) must be defined.  The use of the following Box Structure
Methodology will help in this process.

Software Structure

The general software architecture should consist of:

• Software Components (for each software component, determine its purpose, functionality,
interface, and data requirements).

• Structure & Flow.

Box Structure Methodology
• Black Box:  External view of the system.  This provides a system description of the user visible

system inputs and responses.  No details on the internal structure and operations are provided.
• State Machine:  Intermediate system view.  This decomposes the internal state structure from the

BB description of the system.
• Clear Box:  Internal view of the system operations on inputs and internal state data.

If the box structure methodology, is to be used, the first level/increment should consist of the overall
design taken as deep as possible (using black boxes for functions and sub-systems).  At every
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subsequent increment the design should be taken deeper, two to three level down, until all the boxes
are replaced by their respective functions/subsystems.

Design Refinement

The Top Level Design:

Given the specifications for the system as a whole, a top level software module is designed with the
following properties:

• The design for the top level software is written in a language, which may be but is usually not a
compilable programming language.  Any language which has a precisely enough defined syntax and
semantics to unambiguously define what the design does when executed, and to carry out required
correctness proofs of the software can be used.  Languages tha fit these requirements are called
design languages.  The process of rendering axiomized software into a design language is called
designing the software.

• The software design can be translated from its existing language into a compilable programming
language.  Techniques for doing this translation for standard knowledge models will be presented
later.  The software design can be proved correct.  In particular, the software can be proved to be
complete, consistent and to satisfy its specifications, under the assumption that any other functions
or other software modules used within the current object of proof satisfy some written, precise,
mathematical specifications.

Refining the Design:

Once the disign process has been started, a modification of the familiar successive refinement lifecycle
adds detail to the design.  Detail is added in two ways:

• Software modules which have been axiomized but not designed can be designed.

• Software that has been designed can be translated into a language that is closer to, or is, a
compilable programming language.

Verifying the Design:

A design is verified when it has been proved that the designed module is complete, consistent and
satisfied its specifications.

• A module is complete iff for all points in its input space, some values of the outputs and behaviors
required to instantiate the specifications are computed.

• A module is consistent iff it is possible, both mathematically and under the constraints imposed by
knowledge in the area of application, for all the output values and behaviors to be true at the same
time.
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• A module satisfies its specifications iff its specifications are true when instantiated with any input
values and any outputs or behaviors produced from those inputs.

Completing the Design:

A design is complete when all software modules appearing in the design have been axiomized, designed
and verified.

From Specifications:
1.  An Investment strategy is always suggested:
List of possible investments strategy for KB1:
• Stocks.
• Saving Accounts.
Do Nothing (Although this is a good choice for many instances, it is not considered for the example).
Note:  The list of output might be incomplete at this stage (i.e., may discover other possible strategies
down the line).
Define the specifications in terms of these newly defined list of output.
2.  Proposed solution should be affordable:
• When is stock affordable?
• When is Saving Account affordable?
Interaction with the expert(s)
Depending on the complex nature of the questions to be answered, we may find out that other things
might be needed:
• Interaction with data bases.
• Algorithmic routines.
• Sub Expert systems.
For KB1:
The expert determined that stocks are affordable if “Discretionary Income” exists.
We have to define “Discretionary Income” in a measurable manner.
From the interaction with the expert, we introduce the concept that in order to have “DI”, the investor
has to have:

Some savings (> $ 3000.).
A luxury item (Boat/ Luxury Car).

n.b.:  1.  Keep careful records of interaction with the expert(s).
          2.  One of the products of these steps are expert(s) verifiable statements about the knowledge

domain.
i.e.,  Stocks are affordable if there is savings and a luxury item.
These will be used for carrying out formal proof procedures.  In a high risks situation (see table 3.1)
these statements should be verified by enough experts to get the required level of confidence (see
chapter 9).
We have preliminary design information that consists of:
1. An expert sub-system to determine affordability.
2. An expert sub-system for risk tolerance.
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3. An expert sub-system which makes an investment category decision using 1 & 2.
n.b.:  This is very useful for designing a well structured system.
Refer to chapter 7, “Knowledge Modeling”, and pick a knowledge model that fits the preliminary
design information.

Figure 3.2.2:  KB1 Design

Implementation

In the implementation step, a software module is translated from its current design language into a
compilable language.  The source code resulting from that translation must be verified, i.e. shown to be
complete, consistent and to satisfy its specifications.

Implementation is the last step in a series of design and translation steps that turn an initial high level
specification for the system as a whole into compilable code.  The stepwise refinement process that
produces the code from the initial specification uses the following refinement operations:

• Design of a module that has been specified but not yet designed.

• Specification of a module that is used in a designed module but has not yet been specified.

• Translation of a module from one design language to another language, usually one that is more
detailed and closer to a compilable language.

At the Implementation stage, the main objective is the creation of a complete executable system,
including software to carry out all processes specified in clear or black boxes, according to constraints
on those parts of the system.  The system is comprised of executable rules, objects, procedures, etc.,
that:

• Satisfy requirements of the system as a whole .
• Are executable functions that are equivalent to abstract functions specified in the design.

For example, the design may specify a function that determines that the user is rich.  The
implementation may check the bank account, kind of car owned, etc.  However, it may not catch
certain rich people because it does not check art owned.  In this case, the implementation fails to carry
out the abstract function required of it.  In general, the computer bases a conclusion on less observed
data than an expert, and simplifies the inference an expert makes to one that is just based on the small
set of data the computer looks at.

The implementation stage should consist of the following steps:

1.  Determine the high level structure of the system to be implemented.

2.  Define communication between subsystems Implementation.

3.  Provide a detailed definition of subsystems.
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4.  Select the implementation tool.

5.  Execute the implementation in the tool.

Constraints on Design and Implementation

The following constraints apply to the operations in the stepwise refinement process:

Specification of a module must include all properties that are used in any existing verifications of other
modules.

• No module can be designed before it is specified.

• Designs must be proved to satisfy their specifications.

• Translations must preserve specified properties of the source module (being translated) in the
destination module (the result of the translation).

Correctness Verification

Design vs. Specification

The overall result of this is a proof that any system that satisfies all the design documents is correct
(i.e., complete, consistent, stable, satisfies requirements imposed by subject) provided that the parts not
yet designed or implemented have properties as required by clear box theorems and the models of
knowledge, or specified by the expert.

Code vs. Design

The equivalence between requirements and implementation must be proven.  Previous results together
with proof of equivalence of design and implementation may be used.  This may take the form of a
cleanroom-type layered correctness proof in which all boxes are clear and implemented, with the top
part constituting the previous proof of the equivalence of requirements and design.

Depending on the complexity of the problem and the consequence of failure, this process is to be
accomplished by the developer(s) (Level I), the developer(s) and two members of the organization
(Level II), or a separate verification team (level III).  Table 3.1 is to be used as a guide in determining
the level of the project.  figure 4.3 shows the process and figure 3.3.1 is the implementation to
knowledge base 1.

Table 3.1:  Level of Effort for the Correctness Verification Stage
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Consequence of Failure

Complexity Loss of
Life

Injury High $$$ Inconvenience Other(lC,...)

Very
Complex

III III III II I

Medium III III II I I

Simple III III II I I

Correct Verifications
Done By:
Level I: Developers
Level II: Developer(s) + 2

Members of
Organization

Level III: Separate V&V
Team

2,...n increment

Correctness:
Equivalence Between

Requirements & Design

CORRECTNESS
VERIFICATION
(Team Reviews)

(pass)

NO

YES

Correctness:
Equivalence Between
Design & Implementation

YES CORRECTNESS
VERIFICATION
(Team Reviews)

(pass)

• First Increment

Rigorous & Formal Design Based
on Structured Programing Theory

• Design Logic
• Software Structure
• Knowledge Representation
• Organization of Structural Data

DESIGN
structural design

Executable Rules; Objects; Procedures

• Determine High Level Structure
• Define Communication
• Define Subsystems
• Select Implementation Tool
• Implement

IMPLEMENTATION

OUTPUT:
Detailed CR Report

Figure 3.3:  Correctness Verification

Step 1 -- Determine the high level structure of the system to be implemented:  From the design
stage, it was determined that the expert system consists of 3 subsystems, discretionary income (DI),
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risk tolerance (RT) and type of investment (INV).  The structure of the system can be expressed by the
function:

Investment = INV( DI( boat, "luxury car", "savings account"),

                  RT( stocks, "lottery tickets"))

This expresses the fact that the output of DI and RT are inputs to INV.

Step 2 -- Define communication between subsystems:  The output of DI and RT must be
sufficiently fine-grained to distinguish cases where different investments are indicated.  Since there are
only 2 investments in this example system, only 2 values are required as output for each of these
subsystems; use high and low for risk tolerance, and yes and no for discretionary income.  At this point,
the inputs, outputs and communication between subsystems have all been defined.

Step 3 -- Detailed definition of subsystems:  In this stage, the expert information collected in the
design step will be converted into precise logical statements; this process will be illustrated on the DI
subsystem.

The condition that must be true to have discretionary income is:

A = (Savings > $3000) (1)

AND  ( "Own Boat" = yes  OR "Own Car" = yes )

The expert information about discretionary income can be formalized as:

A IMPLIES ("discretionary income" = yes) (2)

NOT A IMPLIES ("discretionary income" = yes) (3)

Step 4 -- Selection of implementation tool:  At this point, there is enough information to choose a
tool in which to implement the expert system.  The requirements on the tool are:

• Provide for communication between subsystems.

• Express rules such as (2) and (3).

Most rule-based expert system shells meet these requirements.   Although the order of information in
the knowledge base must be slightly different in forward and backward chaining implementations,
either form of inference engine can be used to implement this knowledge base.

Step 5 -- Implementation in the tool:  The rule-based-shell implementation will be written in two
steps: first as a generic rule-based implementation, finally as an implementation in CLIPS.
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Step 5.1 -- A generic rule-based implementation: Rule-based shells typically allow menu, fill-in and
yes-no questions.  The following questions will gather the necessary information for discretionary
income:

QUESTION TEXT TYPE

What is your savings balance? fill-in

Do you own a boat yes-no

Do you own a luxury car yes-no

The inputs and outputs can be represented inside the expert system by the following variables:

VARIABLE TYPE VALUE

savings numerical >= 0

"Do you own a boat" boolean yes or no

"Do you own a luxury car" boolean yes or no

"discretionary income" enumerated values high or low

Now put the knowledge in statements (2) and (3) into the rule form of rule-based shells.  Rule based
shells encode information in the following form:

• Rules are of the form:

IF <conditions> then <inferences> and <actions>

• <conditions> are built from simple requirements with the logical operations AND, OR and NOT.

• Many of the simple requirements can be written in the forms such as VARIABLE = VALUE, or
more generally:

VARIABLE REL VALUE, where REL is one of the relations

=, >, <, >=. <=

• Inferences can also be written in the form:
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VARIABLE = VALUE, i.e. VARIABLE is set equal to VALUE.

Actions are dependent on particular shells, and will be deferred at this time.

Using the above notation, (2) can be written as:

IF (Savings > $3000) (4)

AND  ( "Do you own a boat" = yes

OR "Do you own a luxury car" = yes )

THEN "Discretionary income" = yes

(3) can be put into rule form as:

If NOT <if part of (4) THEN "Discretionary income" = no (5)

Alternatively and more usually, a rule implementing (3) is written in a form in which the NOT is applied
individually to the simple requirements contained in the "IF" part, rather than to a complicated
expression built up from requirements.  DeMorgan's Laws in mathematical logic:

NOT (A OR B) = NOT A AND NOT B (6)

NOT (A AND B) = NOT A OR NOT B

Using (6) repeatedly transforms (5) to:

IF (NOT Savings > $3000) (7)

OR

( NOT "Do you own a boat" = yes

AND NOT "Do you own a luxury car" = yes )

THEN "Discretionary income" = no

Simplifying the simple conditions using the following relations,

(NOT Savings > $3000) = (Savings <= $3000) (8)

( NOT "Do you own a boat" = yes)

= ("Do you own a boat" = no)

( NOT "Do you own a luxury car" = yes)
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= ("Do you own a luxury car" = no)

Substituting (8) into (7) gives:

IF (Savings <= $3000) (9)

OR  ( "Do you own a boat" = no

AND "Do you own a luxury car" = no )

THEN "Discretionary income" = no

Figure 5.1 shows an expert system in a generic rule-based shell language that implements the
discretionary income, risk tolerance and investment subsystems.  The result is a small knowledge base
(called Knowledge Base 1) that implements the investment expert system.  [Note: Knowledge Base 1
leaves out the savings requirement, to further simplify the example when it is used to illustrate
verification and validation.]

Step 5.2 -- Implementation in CLIPS

Once a generic knowledge base has been written, it must be translated into the language of a particular
shell.  Shown below is an implementation of the generic knowledge base in CLIPS.  The CLIPS is
fairly close to the generic rule-based KB.  The main differences are:

rule syntax: Rules in CLIPS have the following syntax:
(defrule <RULE NAME> <COMMENT>
 <LIST OF CONDITIONS>
 =>
 <LIST OF ACTIONS AND INFERENCES>
)
implementation of the AND operation:  The AND operation can be implemented in two ways:
• A list of the conjuncts in the AND.
• An explicit AND operation.
These alternative ways of writing AND are illustrated by the following two equivalent rules:
(defrule rule1  "stock"
 (risk_tolerance high)
 (discretionary_income TRUE)
 =>
 (assert (investment stocks))
 (printout t "We recommend stocks." crlf)
)
(defrule rule1  "stock"
 (and (risk_tolerance high) (discretionary_income TRUE))
 =>
 (assert (investment stocks))
 (printout t "We recommend stocks." crlf)
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)
implementation of the OR operation:  The OR operation can be implemented by an explicit OR
operation, i.e.,
(defrule rule3c  "high risk tolerance"
 (or  (now_own_stocks TRUE )(lottery_tickets TRUE ))
 =>
 (assert(risk_tolerance high))
)
Equivalently, one can write a separate rule for each disjunct in the OR:
(defrule rule3c1  "high risk tolerance 1"
 (now_own_stocks TRUE )
 =>
 (assert(risk_tolerance high))
)
(defrule rule3c2  "high risk tolerance 2"
 (lottery_tickets TRUE )
 =>
 (assert(risk_tolerance high))
)
 Here is an actual CLIPS implementation.  This implementation is a fairly straightforward translation of
the generic KB1.  More sophisticated implementations of KB1 would structure the knowledge base so
that when sufficient information for a conclusion had occurred, the user would be spared extra
questions.
;
; KB1 in CLIPS,  a demo rule based system
;
;
; Note: In the following knowledge base,
; we will use certain user interface functions
; which can be defined in CLIPS:
;
; yes-or-no-p asks a yes-no question
; ask-parm asks a fill-in question
; ask-parm asks a menu question
;
; To run this CLIPS knowledge base, you need these functions
; which are not shown here.
;
;
; INVESTMENT TYPE SUBSYSTEM
;
;    Rule 1: If "Risk tolerance" = high
;      AND "Discretionary income exists" = yes
;         then investment = stocks.
;
(defrule rule1  "stock"
 (risk_tolerance high)
 (discretionary_income TRUE)
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 =>
 (assert (investment stocks))
 (printout t "We recommend stocks." crlf)
)
;
;    Rule 2: If "Risk tolerance" = low
;      OR "Discretionary income exists" = no
;         then investment = savings account.
;
(defrule rule2a  "savings account 1"
 (risk_tolerance low)
 =>
 (assert (investment "savings account"))
 (printout t "We recommend a savings account." crlf) )

(defrule rule2b  "savings account 2"
 (discretionary_income FALSE)
 =>
 (assert (investment "savings account"))
 (printout t "We recommend a savings account." crlf) )
;
; DISCRETIONARY INCOME SUBSYSTEM
;
;    Rule 5: If
;         ( Savings > $3000)
;         AND ("Do you own a boat" = yes
;           OR "Do you own a luxury car" = yes)
;         then "Discretionary income exists" = yes.
;
; First we will gather the information
;
(defrule rule5a  "boat"
 (not (has_boat ? ))
 =>
 (bind ?boat ( yes-or-no-p "Do you own a boat? " ))
 (assert (has_boat ?boat  ))
)
;
(defrule rule5b  "luxury car"
 (not (has_lux_car ? ))
 =>
 (bind ?lc ( yes-or-no-p "Do you own a luxury car? " ))
 (assert (has_lux_car ?lc  ))
)
;
(defrule rule5c  "savings balance"
 (not (savings_balance ? ))
 =>
 (bind ?sb ( ask-parm "What is your savings balance? " ))
 (assert (savings_balance ?sb))
)
;
; Now we will use the information determining discretionary income
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;
(defrule rule5d  "has discretionary income"
 (savings_balance ?sb)
 (test( > ?sb 3000))
 (or (has_lux_car TRUE  ) (has_boat TRUE))
 =>
 (assert (discretionary_income TRUE))
)
;
;    Rule 6: If Savings <= $3000
;              OR
;              ("Do you own a boat" = no
;                AND "Do you own a luxury car" = no)
;              then "Discretionary income exists" = no.
;
(defrule rule6  "has no discretionary income"
 (savings_balance ?sb)
 (test( <= ?sb 3000))
 (and (has_lux_car FALSE  ) (has_boat FALSE))
 =>
 (assert (discretionary_income FALSE))
)
;
; RISK TOLERANCE SUBSYSTEM
;
;    Rule 3: If "Do you buy lottery tickets" = yes
;      OR "Do you currently own stocks" = yes
;         then "Risk tolerance" = high.
;
(defrule rule3a  "lottery tickets"
 (not (lottery_tickets ? ))
 =>
 (bind ?Lt ( yes-or-no-p "Do you purchase lottery tickets ? "))
 (assert (lottery_tickets ?Lt ))
)
;
(defrule rule3b  "currently own stocks"
 (not (now_own_stocks ? ))
 =>
 (bind ?s ( yes-or-no-p "Do you currently own stocks ? "))
 (assert (now_own_stocks ?s ))
)
;
(defrule rule3c  "high risk tolerance"
 (or  (now_own_stocks TRUE )(lottery_tickets TRUE ))
 =>
 (assert(risk_tolerance high))
)
;
;    Rule 4: If "Do you buy lottery tickets" = no
;      AND "Do you currently own stocks" = no
;         then "Risk tolerance" = low.
;
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(defrule rule4  "low risk tolerance"
 (and (now_own_stocks FALSE)(lottery_tickets FALSE))
 =>
 (assert(risk_tolerance low ))
)

Figure 3.3.1:  KB1 Implementation
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4. The Basic Proof Method

This chapter provides an overview of the basic method for formal proofs:

• Partition larger systems into small systems.
• Prove correctness on small systems by non-recursive means.
• Prove that the correctness of all these subsystems implies the correctness of the entire system.

Introduction

An expert system is correct when it is complete, consistent, and satisfies the requirements that express
expert knowledge about how the system should behave.

For real-world knowledge bases containing hundreds of rules, however, these aspects of correctness
are hard to establish.  There may be millions of distinct computational paths through an expert system,
and each must be dealt with through testing or formal proof to establish correctness.

To reduce the size of the tests and proofs, one useful approach for some knowledge bases is to
partition them into two or more interrelated knowledge bases.  In this way the VV&E problem can be
minimized.

Overview of Proofs Using Partitions

The basic method of proving each of these aspects of correctness is basically the same.  If the system is
small, a technique designed for proving correctness of small systems should be used.  If the system is
large, a technique for partitioning the expert system must be applied and the required conditions for
applying the partition to the system as a whole should be proven.  In addition the correctness of any
subsystem required by the partition must be ensured.  Once this has been accomplished this basic proof
method should be applied recursively to the subexpert systems.

To carry out a partitioning of an expert system, one generally requires expert knowledge to define the
top level problem-solving strategy of the expert system.  In Chapter 7, "Knowledge Modeling",  a
number of knowledge representations are outlined that may be useful in formalizing the top level
structure of the knowledge base.  Through knowledge acquisition with one or more expert, the top
level structure of the knowledge base should be represented in a knowledge model.  The correctness of
this knowledge model should be validated with other experts or with standard reference materials in the
target domain  (the section in Chapter 9, on Validating the Semantic Consistency of Underlying
Knowledge Items, addresses the problem of validating expert knowledge).  When the formalization of
the top level knowledge base has been so validated, the fact that the knowledge base has the validated
structure can, from the standpoint of a formal proof, be assumed.

Once the top level structure of the knowledge base has been validated, to show the correctness of the
expert system, the following criteria must be accomplished:
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• Show that the knowledge base and inference engine implement the top level structure.
• Prove any required relationships among sub-expert systems or parts of the top level knowledge

representation.
• Prove any required properties of the sub-knowledge bases.

Chapter 7, "Knowledge Modeling", discusses what exactly must be proved for various knowledge
models and for various aspects of the correctness problem.

A Simple Example

To illustrate the basic proof method, Knowledge Base 1 will be proved correct in Figure 5.1.  Although
this knowledge base is small enough to verify by inspection, the proof will be carried out in detail to
illustrate the proof method.
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Knowledge Base 1

Rule 1:  If "Risk tolerance" = high

             AND "Discretionary income exists" = yes

 then investment = stocks.

Rule 2:  If "Risk tolerance" = low

             OR "Discretionary income exists" = no

             then investment = "bank account".

Rule 3:  If "Do you buy lottery tickets" = yes

             OR "Do you currently own stocks" = yes

 then "Risk tolerance" = high.

Rule 4:  If "Do you buy lottery tickets" = no

             AND "Do you currently own stocks" = no

 then "Risk tolerance" = low.

Rule 5:  If "Do you own a boat" = yes

             OR "Do you own a luxury car" = yes

 then "Discretionary income exists" = yes.

Rule 6:  If "Do you own a boat" = no

             AND "Do you own a luxury car" = no

 then "Discretionary income exists" = no.

Figure 4.1:  Knowledge Base 1
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Step 1 -- Determine Knowledge Base Structure

To prove the correctness of Knowledge Base 1 (KB1), the expert knowledge can determine  that the
system represents a 2-step process:

1. Find the values of some important intermediate variables, such as risk tolerance and discretionary
income.

2. Use these values to assign a type of investment.

KB1 was built using this knowledge; therefore, it can be partitioned into the following pieces:

• A subsystem to find risk tolerance (part of Step 1).
• A subsystem to find discretionary income (part of Step 1).
• A subsystem to find type of investment given this information (part of Step 2).

To prove the correctness of a multi-step system, it must be proved that Step 1 satisfies the following
criteria:

• For each set of inputs, all the outputs required by Step 2 are always produced by Step 1.
• For each set of inputs, all the outputs of Step 1 are single-valued.
• The correct outputs of Step 1 are assigned to each possible set of inputs.

It must also be proved for Step 2 that:

• For each set of inputs and computed Step 1 outputs, Step 2 produces some output.
• For each set of inputs and Step 1 outputs, all the outputs of Step 2 are single-valued.
• The correct outputs of Step 2 are assigned to each possible set of inputs and computed Step 2

outputs.

Step 2 -- Find Knowledge Base Partitions

To find each of the three subsystems of KB1, an iterative procedure can be followed:

1. Start with the variables that are goals for the subsystem, e.g., risk tolerance for the risk tolerance
subsystem.

2. Include all the rules that set subsystem variables in their conclusions.  For the risk tolerance
subsystem, Rules 3 and 4 are included.

3. Include all variables that appeared in rules already in the subsystem and are not goals of another
subsystem.

4. For the risk tolerance subsystem, include "Do you buy lottery tickets" and "Do you 
currently own stocks".
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5. Quit if all rules setting subsystem variables are in the subsystem,  or else go to Step 2.  For the risk
tolerance subsystem, there are no more rules to be added.

Figure 4.2 below shows the partitioning of KB1 using this method.

LT = 
YES

NO

ST = 
YES

NO

DISC. INCOME
(DI)

INVESTMENT
(I) RISK TOLERANCE

(RT)

N

Y

= Lux. Car
NO

YES

= BoatNO

YES

H

L

Bank Account < : OR
   : AND

RULES:                 3,4                                              1,2                                               5,6

Figure 4.2:  An Example of Knowledge Base Partitioning

 Step 3 -- Completeness of Expert Systems

Completeness Step 1 -- Completeness of Subsystems

The first step in proving the completeness of the entire expert system is to prove the completeness of
each subsystem.  To this end it must be shown that for all possible inputs there is an output, i.e., the
goal variables of the subsystem are set.  This can be done by showing that the OR of the hypotheses of
the rules that assign to a goal variable is true.

For example, the discretionary subsystem of KB1 will be shown to be complete.  The discretionary
subsystem consists of these rules:

Rule 5:  If "Do you own a boat" = yes

 OR "Do you own a luxury car" = yes

 then "Discretionary income exists" = yes.
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Rule 6:  If "Do you own a boat" = no

 AND "Do you own a luxury car" = no

 then "Discretionary income exists" = no.

Step 3.1:  The first step is to form the OR of the possible outputs of the system:

"Discretionary income exists" = yes (4.1)

OR "Discretionary income exists" = no

(4.1) expresses the condition under which some conclusion is reached.

Step 3.2:  For each output condition in (4.1), the user substitutes the OR of rule hypotheses for rules
that imply that condition.  For example, for

"Discretionary income exists" = yes (4.2)

the only rule inferring (4.2) is Rule 5; its hypothesis is:

"Do you own a boat" = yes (4.3)

OR "Do you own a luxury car" = yes

Since this is the only rule concluding (4.2), (4.3) is the OR of rule hypotheses implying (4.2).

Making the substitution of (4.3) for (4.2) in (4.1), and a similar substitution for:

"Discretionary income exists" = no (4.4)

the result is:

("Do you own a boat" = yes (4.5)

OR "Do you own a luxury car" = yes)

OR

("Do you own a boat" = no

  AND "Do you own a luxury car" = no)

Step 3.3: Continue substitutions of the OR of rule hypotheses for inferred propositions (4.5) until the
user obtains an expression where only input variables appear.  In fact, (4.5) already contains only input
variables, and no further substitutions are needed.

Step 3.4: Apply Boolean algebra to simplify the expression from Step 3; the goal is to show that the
Step 3 expression always has the truth value TRUE.
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Letting:

A = "Do you own a boat" = yes

B = "Do you own a luxury car" = yes

(4.5) can be rewritten as:

(A or B) or (Not A and Not B) (4.6)

Simplifying this gives:

(A or B) or (Not A and Not B)

= (A or B or Not A) and (A or B or Not B)

= true and true

= true

This means that the OR of conditions that imply some conclusion is true.

Completeness Step 2 -- Completeness of the Entire System

The results of subsystem completeness are used to establish the completeness of the entire system.  The
basic argument is to use results on subsystems to prove that successively larger subsystems are
complete.  At each stage of the proof there are some subsystems known to be complete; initially the
subsystem that concludes overall goals of the expert system will be complete.  At each stage of the
proof, a subsystem that concludes some of the input variables of the currently-proved-complete
subsystem is added to the currently complete subsystem.  After a number of steps equal to the number
of subsystems, the entire system can be shown to be complete.

When a complete subsystem that sets input variables of the currently complete subsystem is added to
the latter, the augmented subsystem is complete. Any input to the augmented subsystem can be divided
into a set V1 of input variables for the unaugmented system and a set V2 for the newly added
subsystem.  Note that some variables may be in both of these sets.  Since the newly added subset is
complete, given V1, that subsystem produces output O1.  However, O1 union V2 is an input for the
unaugmented system, which, because of its completeness, produces an output showing that the
augmented system is complete.

Since the number of subsystems is finite, the process of augmentation ceases after a finite number of
steps.  By mathematical induction, using a similar argument to that of the previous paragraph, it
follows that the entire system is complete.

For KB1, this result can be applied, or alternatively make the following specific argument:  Inputs to
the system as a whole can be partitioned into inputs for the risk tolerance and the discretionary income
subsystems.  Each of these is complete, and so produces a risk tolerance and discretionary income
respectively.  These are inputs to the investment subsystem its only inputs.  Since the investment
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subsystem is complete it produces an investment.  So an output for the entire system exists for each
input, and the system as a whole is complete.

Step 4 -- Consistency of the entire system

The first step in proving the consistency of the entire expert system is to prove the consistency of each
subsystem.  To do this, the user must show that for all possible inputs, the outputs are consistent, i.e.,
that the AND of the conclusions can be satisfied.

For example, if an expert system concludes "temperature > 0" and "temperature < 100", the AND of
these conclusions can be satisfied.  However, if the system concludes, "temperature < 0" and
"temperature > 100", the AND of these two conclusions has to be false.  It is clear that based on the
input that produced these two conclusions, it is not possible for all of the system's conclusions to be
true at the same time and thus the system producing these conclusions is inconsistent.

Consistency Step 1 -- Find the Mutually Inconsistent Conclusions

The first step in proving consistency is to identify those sets of mutually inconsistent conclusions for
each of the subsystems identified in the "Find partitions" step above.

Some sets of conclusions are mathematically inconsistent.  For example, if a system describes
temperature, the set:

{"temperature < 0", "temperature > 100"}

is mathematically inconsistent.

However, other conclusion sets that are not mathematically inconsistent may be inconsistent based on
domain expertise.  For example, one investment advisor expert system could be designed to
recommend several types of investments to each investor (probably not a bad idea).  For such a system,
"investment = stocks" AND "investment = bank account" are not inconsistent; stocks and bank
accounts are just two of the investments recommended for some investor.  However, if the system
were designed to recommend only one investment per investor, "investment = stocks" AND
"investment = bank account" would be interpreted as a contradiction, and the system recommending
this would be inconsistent.

Because some sets of conclusions are inconsistent because of domain expertise, finding all sets of
inconsistent conclusions generally requires expert knowledge.

Note that if there are no mutually inconsistent conclusions in the expert system as a whole, then
consistency is true by default, and no further consistency proof is necessary.

Consistency Step 2 -- Prove Consistency of Subsystems

If there are inconsistent conclusions in the knowledge base as a whole, then the next step in proving
consistency is to prove the subsystems consistent.  This can be done by showing that no set of inputs to
a subsystem can result in any of the sets of inconsistent conclusions.  For each set of inconsistent
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conclusions, the user can construct, as detailed below, a Boolean expression B that represents all the
conditions under which that set of inconsistent conclusions would be proved by the subsystem.  If that
Boolean expression can be shown to be FALSE, there are no such conditions.

Now the construction of the Boolean expression B to be proved false will be described.  Let

S = {C1, ..., Cn}

be a set of potentially inconsistent conclusions for one of the subsystems.

B will be constructed by a backward chaining process, starting with

B0 = C1 AND ... AND Cn

Let Ci be one of the Cs.  For all rules that conclude Ci, construct the OR of these rules initial
conditions.  Then substitute the resulting expression into B0.

Continue these substitutions until an expression results that has only the inputs to the expert subsystem.
For each atomic Boolean expression A that is the conclusion of a rule in the subsystem, substitute the
OR of the rule if parts of rules that conclude A.  After at most a finite number of such substitutions, the
user obtains an expression that states when all the C’s would be true in terms of the input variables of
the subsystem.

For the risk subsystem, the only inconsistent set of rule conclusions is:

S = { "Risk tolerance" = high  and "Risk tolerance" = low }

The only initial conditions for "Risk tolerance" = high is from Rule 3:

"Do you buy lottery tickets" = yes

  OR "Do you currently own stocks" = yes

and the only initial conditions for "Risk tolerance" = low is from Rule 4:

"Do you buy lottery tickets" = no

 AND "Do you currently own stocks" = no

Let:

A0 = ("Do you buy lottery tickets" = yes)

A1 = ("Do you currently own stocks" = yes).

This means:

not A0 = ("Do you buy lottery tickets" = no)
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not A1 = ("Do you currently own stocks" = no).

Using this notation:

B0 = (A0 OR A1) AND (NOT A0 AND NOT A1)

For this small subsystem, B0 is actually expressed in terms of inputs to the subsystem (i.e., B0 is
actually B).

Distributing the top level AND over the OR,

B0 = (A0 AND (NOT A0 AND NOT A1))

OR (A1 AND (NOT A0 AND NOT A1))

The first subexpression is FALSE because it contains A0 AND NOT A0.  Likewise, the second is
FALSE because it contains A1 AND NOT A1.  Therefore, B0 is FALSE because it is the OR of only
FALSE expressions.

Consistency Step 3 -- Consistency of the Entire System

The results of subsystem consistency are used to establish the consistency of the entire system.  The
basic argument is to use results on subsystems to prove that successively larger subsystems are
consistent.  At each stage of the proof, there are some subsystem known to be consistent; initially, this
is the subsystem that concludes goals of the expert system as a whole.  At each stage of the proof, a
subsystem that concludes some of the input variables of the currently-proved-consistent subsystem is
added to the currently consistent subsystem.  After a number of steps equal to the number of
subsystems, the entire system can be shown to be consistent.

When a consistent subsystem that sets input variables of the currently consistent subsystem is added to
the currently consistent subsystem, the augmented subsystem is consistent.  Any input to the
augmented subsystem can be divided into a set V1 of input variables for the unaugmented system and a
set V2 for the newly added subsystem.  Note that some variables may be in both of these sets.  Since
the newly added subset is consistent, given V1, that subsystem produces and output O1.  However, O1
union V2 is an input for the unaugmented system producing output due to its consistency.  This shows
that the augmented system is consistent.

Since the number of subsystems is finite the process of augmentation ceases after a finite number of
steps.  By mathematical induction, using the above mentioned argument, it follows that the entire
system is consistent.

For KB1, one can apply the result, or alternatively make the following specific argument:  Inputs to the
system as a whole can be partitioned into inputs for the risk tolerance and the discretionary income
subsystems.  Each of these is consistent, and so produces a consistent set of risk tolerance and
discretionary incomes, respectively.  These are inputs to the investment subsystem, and are that
system's only inputs.  Since the investment subsystem is consistent, it produces a consistent investment.
Thus an output for the entire system exists for each input, and the system as a whole is consistent.
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The other subsystems of KB1 can be proved consistent in the same way.

Step 5 -- Specification Satisfaction

In order to prove that KB1 satisfies its specifications, the user must actually know what its
specifications are.  This is a special case of the general truth that in order to verify and validate, the user
must know what a system is supposed to do.  Specifications should be defined in the planning stage of
an expert system project.

To illustrate the proof of specifications it will be assumed that KB1 is supposed to satisfy:

A financial advisor should only recommend investments that an investor can afford.

As with many other aspects of verification and validation, expert knowledge must be brought to bear
on the proof process.  For KB1, an expert might say that anyone can afford a savings account.
Therefore, the user only has to look at the conditions under which stocks are recommended.  However,
that same expert would probably say that just having discretionary income does not mean that the user
can afford stocks; that judgment should be made on more than one variable.  Therefore, it would be
reasonable to conclude that KB1 does not satisfy the above specification.

However, if the expert does agree that the expert system observes all necessary inputs, one must use
inputs to the expert system to express a specification.  For KB1, this means that the specification is
reexpressed as:

KB1 recommends stocks only when there is discretionary income.

The user can prove this for the investment subsystem by assuming:

NOT discretionary income

and proving:

NOT stocks

The only rule that concludes stocks has "discretionary income" = yes in an AND in its "if" part.
Therefore, the investment system satisfies the specification.

To prove the entire system satisfies the specifications, the user must look at the conditions under which
"discretionary income" = yes is concluded from inputs for the system as a whole.  A financial expert
would surely say that owning a luxury car or boat does not mean that discretionary income actually
exists and the system as a whole fails the specification, an expected outcome of a small example system
tackling a complex subject.
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5. Finding Partitions Without Expert Knowledge

This chapter presents techniques for partitioning large expert systems when expert knowledge is
unavailable.

Introduction

Generally, it is best to partition a knowledge base using expert knowledge, resulting in a knowledge
base that reflects the expert's conception of the knowledge domain.  This, in turn, facilitates
communication with the expert, and later maintenance of the knowledge base.  Chapter 7, “Knowledge
Modeling”, presents techniques for partitioning using expert knowledge.

Sometimes, however, it is not possible to obtain expert insight into a knowledge base.  In this case
functions and incidence matrices can be extracted from the knowledge base, and the information
contained therein used to partition the knowledge base.

Functions

Expert Systems are Mathematical Functions

Expert systems are, among other things, complicated functions in the mathematical sense of function.
[By definition, a function is a set F of ordered pairs, such that if (a,b) and (c,d) are in F, and a = c, then
b = d.]  Less formally, a function is a single-valued mapping from an input space (called the domain) to
an output space (called the range); i.e., there is only one value of the function for each point in the input
space.  For example, KB1 is a function that for each set of user data (i.e., amount of savings, personal
property, etc.) assigns a type of investment.

The input variables to an expert system viewed as a function are the variables that are not computed
inside the expert system, but are asked the of user or looked up in a data base.  Variables that are
inferred by rules or computed by functions in the knowledge base are not input variables.  In KB1, for
example, purchase of lottery tickets and ownership of boats and luxury cars are input variables, while
risk tolerance and discretionary income are not.  Tolerance and discretionary income, however, are
inputs to the investment subsystem of KB1.

Propositions that are possible conclusions of the expert system are Boolean output variables of the
expert system.  Numerical or enumerated variables that are considered outputs of the expert system are
also output variables.  When viewed as a function the value of an expert system is a vector of these
individual output variables.
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Partitioning Functions into Compositions of Simpler Functions

Functions can be written as compositions of simpler functions.  For expert systems, two of the
important relations that build more complex functions from simpler ones are Cartesian product and
function composition.

Cartesian Product

Suppose that an expert system made two different kinds of recommendations, e.g., a traffic
management system that both set the timing of lights and controlled access to exit ramps.  This expert
system could be considered as a function E that computed light timing and on ramp access from certain
inputs, e.g.:

E(inputs) = ( timings, access).

E could be split into two expert systems that computed these results separately:

E = ( timings(inputs), access(inputs)) (5.1).

While some of the inputs and intermediate conclusions might appear in both subsystems, (5.1)
decomposes E into two subsystems using the Cartesian product operation.  The Cartesian product
operation in this case takes the two separate conclusions, timings(inputs) and access(inputs) and builds
the conclusions of E:

( timings(inputs), access(inputs))

by putting the separate conclusions of the subsystems together in a fixed, predetermined order.

More generally, if:

(y1,...,ym ) = f(w1,...,wk),

(z1...,zq ) = g(x1,...,xn,),

then:

(y1,...,ym, z1...,zq ) = f(w1,...,wk) X g(x1,...,xn,),

where X is the Cartesian product operator.

Applied to expert systems, this result means that if there is an expert system where input Ws are used
to compute the conclusion Ys, and the Xs are used to compute the Zs, the system can be partitioned
into subsystems:

(y1,...,ym ) = f(w1,...,wk),

(z1...,zq ) = g(x1,...,xn,),
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and the results concatenated together.

Function Composition

Function composition uses the results of an earlier function A as the inputs to a later function B to
compute a single overall function C.  This overall function is the result of :

1.  Starting with the inputs to A.

2.  Applying the function A to these inputs.

3.  Applying B to the results of Step 2.

4.  Using the results of step 3 as the value of C.

In the Pavement Maintenance Expert System (PAMEX), for example, various data items are used to
compute the "Pavement Serviceability Index" (PSI) and other measures of pavement life.  The PSI and
other similar parameters are then fed into a follow-up set of rules that choose appropriate maintenance
procedures.  PAMEX can be considered as a composition of the subsystem that computes indices with
the subsystem that uses these to compute appropriate maintenance procedures.

In mathematical notation, suppose the output of an expert system depends on a set of variables, 
y1,...ym, i.e.:

E = f(y1,...,ym)

In addition, suppose each of the y's is a function of some other variables, i.e.,:

yi = gi(x1,...,xmi)

Then E = f( g1(x11,...,x1m),

            g2(x21,...,x2m),

            ....

            gn(xm1,...,xnm))

i.e., the expert system E is the result of applying the function f to the result of applying Gs to the input
variables.

Note that which variables are functions of which others are properties of the expert system.  This
means that a function implemented by an expert system can not be arbitrarily rewritten as the
composition of simpler functions.  Instead, the choice of simpler functions is motivated by:
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• Which variables are functions of which other ones in the expert system knowledge base.
• Which rewriting of the function computed by an expert system as the composition of functions

reduces the size of the VV&E problem.

For KB1, investment is a composition of an investment function with risk tolerance and discretionary
income functions:

• investment( risk_tolerance( "lottery tickets", "stock ownership"),
• discretionary_income( "boat", "luxury car" ) ).

Dependency Relations

To find the functions embedded in a knowledge base, it is helpful to compute the dependency relation
among variables.

Immediate Dependency Relation

The first step is to compute the immediate dependency relation.  If X1 and X2 are variables in the
knowledge base, X2 is immediately dependent on X1, if and only if, the following are true:

• X1 appears in an expression that computes X2.
• X1 appears in the if part of a rule that sets or concludes X2.
• X1 is an input to a function that computes X2.

The table below shows the immediate dependency relation for Knowledge Base 1.  A1 appears in cell
(I,Jj), if and only if, variable J is immediately dependent on variable I.

The immediate dependency relation for Knowledge Base 1 is shown in table 5.1.

Table 5.1:  Immediate Dependency Relation for KB1

immediate dependency LC B S LT DI RT INV

luxury car (LC) 0 0 0 0 1 0 0

boat (B) 0 0 0 0 1 0 0

stocks (S) 0 0 0 0 0 1 0

lottery tickets (LT) 0 0 0 0 0 1 0

discretionary income (DI) 0 0 0 0 0 0 1

risk tolerance (RT) 0 0 0 0 0 0 1

investment (INV) 0 0 0 0 0 0 0



55

The immediate dependency relation shows which variables influence the value of other variables
through one level of computation (one rule inference or function computation) in the expert system.

Computing the Immediate Dependency Matrix

 The immediate dependency matrix can be computed by syntactic inspection of the source code
(including both rules and procedures) of the expert system knowledge base.  Although the underlying
computation is basically the same, the computation can be described either as a database or as a sparse
matrix computation.

Database Description of Immediate Dependency Computation

The immediate dependency matrix can be constructed directly as follows.  In this construction, the
matrix is represented by a relation with 2 colums:

• Column 1:  A variable that affects another variable.

• Column 2:  A variable that is affected by another variable.

Each row in the table represents a pair of variables such that the first affects the second directly in some
rule or function.

Start with an empty database.

For each rule or function in the knowledge base, find all pairs (x,y) such that x is an input and y an
output of the rule or function.  Put each such pair in the database.

It is also possible to construct the data base as the composition of two simpler tables:

An input table:

• Column 1:  An input variable.

• Column 2:  A rule or function in the knowledge base.

A row (x,f) appears in this table when a variable x is an input to a rule or function f.

An output table:

• Column 1:  An output variable.

• Column 2:  A rule or function in the knowledge base.

A row (x,f) appears in this table when a variable x is an output to a rule or function f.

Now by applying the following join operation to the tables, build atable where:

• Column 1 is an input variable.
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• Column 2 is an output variable.

There is a row for each variable pair (x,y) such that for some f, (x,f) is in table 1 and (y,f) in table 2.

Sparse Matrix Description of Immediate Dependency Computation

The relation between input and output variables describes a aparse matrix representing the immediate
dependency relation.  The rows and columns are indexed by variables.  A 1 appears for the matrix
position described by each row in the table constructed in the preceeding section, and a 0 appears for
all other matrix positions.  By the definition of the immediate dependency relation, this sparse matrix
represents that relation.

The join-based computation described above can be written using sparse matrices as follow:

1. Construct input and output matrices:

The input matrix is based on table 1.  The rows are indexed by variables and the columns by
functions and rules.  A 1 appears when a variable is an input to a rule or function.  Zeros fill the
other matrix positions.

The Output matrix is based on table 2, but is the transpose of the matrix that directly represents
table 2.  The rows are indexed by functions and rules.  The columns are indexed by variables.  A
1 appears when a variable is an output of a rule or function. Zeros fill the other matrix positions.

2. Compute the product of the input matrix by the output matrix.

3. Booleanize the product matrix, i.e. replace all non-zero entries by 1s.

This product matix has a 1 at position (x,y) whenever the product has a non-zero, i.e. when there is a
rule or function f where x is an input to f and f has y as an output.

An Example

Dependency Relations of Rules on Variables in Knowledge Base 1

In KB1, all atomic formulas set by the knowledge base are of the form:

VARIABLE  = VALUE

When this is the case, the immediate dependency of variables and rules is sufficient to obtain the
dependency among variables.  Table 5.2 shows how variables influence rules.
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Table 5.2:  How Variables Influence Rules

R1 R2 R3 R4 R5 R6

LC 1 1
B 1 1
S 1 1
LT 1 1
DI 1 1
RT 1 1
INV

Dependency Relations of Variables on Rules in Knowledge Base 1

Table 5.3 shows how rules influence variables.

Table 5.3:  How Rules Influence Variables

LC B S LT DI RT INV
R1 1
R2 1
R3 1
R4 1
R5 1
R6 1

Dependency Relations of Variables on Variables in Knowledge Base 1

Multiplying A*B creates the matrix showing how each variable influences others.  Positive numbers in
cell (R,C) indicate that the variable in row R influences the variable in column C.  Making this into a
Boolean matrix yields the immediate dependency matrix for variables in KB1.

Table 5.4 shows the immediate dependency matrix for KB1.
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Table 5.4:  Immediate Dependency Matrix for KB1

LC B S LT DI RT INV
LC 0 0 0 0 2 0 0
B 0 0 0 0 2 0 0
S 0 0 0 0 0 2 0
LT 0 0 0 0 0 2 0
DI 0 0 0 0 0 0 2
RT 0 0 0 0 0 0 2
INV 0 0 0 0 0 0 0

Using the extended immediate dependency relation R just defined, the user can compute a sub-
knowledge-base that is sufficient to compute a set of variables.  Let SO be a set of output variables for
a function f, chosen as discussed in the previous section.  Let RR be either one of the R *a n or the
relation R *d.  Then the sub-knowledge base that computes f is defined by:

x is in Sub_KB(f) iff x RR y for some y in SO.

Operations on Relations

Using the immediate dependency relation, one may compute the influences of variables through any
number of levels of inference or function computation and composition.  This requires union and
composition relations defined as follows:

Relation:  A relation is, from a mathematical standpoint, a set of ordered pairs.

For example, the immediate dependency relation is shown as an ordered pair in figure 5.1:

Figure 5.1:  Immediate Dependency Relation as Ordered Pairs

Domain:  If R is a relation {x| for some y, xRy} is the domain of R.  Some examples of domains are
shown in figure 5.2.

Domain of the investment subsystem of KB1:

{(LC,DI), (B,DI), (S,RT), (LT,RT), (DI,INV), (RT,INV)}

A pair (x,y) appears in the immediate dependency relation if and only if x influences the value
of y.
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{ ("discretionary income" = yes, "risk tolerance" = high),

  ("discretionary income" = no,  "risk tolerance" = high),

  ("discretionary income" = yes, "risk tolerance" = low ),

  ("discretionary income" = no , "risk tolerance" = low )}

Domain of the immediate dependency relation for KB1:

{luxury car, boat, stocks, lottery tickets, discretionary

tolerance, risk tolerance, investment}

Figure 5.2:  Examples of Domains

Range:  {y| for some x, xRy} is the range of r.  For example, the range of the investment subsystem of
KB1 is { stocks, savings account};  the range of the immediate dependency relation is {0, 1}.

Composition:  If R1 and R2 are relations, the relation (R1 o R2) is defined as follows: x (R1 o R2) z if
and only if there is a y such that x R1 y and y R2 z.

For example, the composition of the immediate dependency relation of KB1 with itself is:

 {(LC,INV), (B,INV), (S,INV), (LT,INV)}.

For an immediate dependency relation R among the variables of an expert system, (x,z) is in RoR if and
only if there is a y such that (x,y) and (y,z) are in R; i.e., there is a variable y such that x influences y
and y influences z.  In other words, RoR shows the variables that indirectly influence another variable
acting through a single intermediate variable.

Matrix representation:  When range(R1) = domain(R2)

the composition operation R1 o R2 can be computed by matrix multiplication.  A relation R is
represented by a matrix M = {m(i,j)} if and only if:

m(i,j) = 1 iff x R y where x is variable i and y is variable j

m(i,j) = 0 otherwise.

Table 6.1 shows the immediate dependency relation in matrix form.

If Mi represents Ri, B( M1 o M2) represents R1 o R2, where:

M1 o M2 represents matrix product of M1 and M2.
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B(M) = {bm(i,j)} represents the Boolean operation on matrices, i.e.,

bm(i,j) = 1 iff m(i,j) != 0

bm(i,j) = 0 iff m(i,j) = 0.

Theorem 5.1:  If R1 and R2 are immediate dependency matrices, B(M1 o M2) represents R1 o R2
when M1 represents R1 and M2 represents R2.

This theorem says that the representation of the indirect dependency relation with one intermediate
variable can be computed by Booleanizing the matrix product of the immediate dependency matrix
with itself.

Proof:  Let M be the matrix that represents R1 o R2, based on a numbering of the relevant variables
v1,...vn.  The (i,j) entry of M is 1 if and only if vi influences vj.  This means that there two sets of inputs
where the vi's differ, and also where the results of applying (R1 o R2) to these inputs differ.  On these
two inputs, one of the inputs to R2 must vary on the two inputs; if no input to R2 varied, the output
would also not vary on the two inputs.

Since at least one input variable to R2 varies when vi varies, let vk be such an input to R2.  Since vk
varies when vi varies, R1(i,k) = 1.  Likewise, since vj varies when vk varies, R2(k,j) = 1.   This means
that:

the kth entry of row i = 1

the kth entry of column j = 1.

As a result, kth summand in the inner product:

(Row i of M1) * (column j of M2) (5.2)

is 1.  Since all entries of M1 and M2 are non-negative, the Cartesian product (6.2) is non-zero.  This
means that (M1 o M2) has a non-zero (i,j) entry, so B( M1 o M2)(i,j) = 1.  The result is that
everywhere M is 1, B(M1 o M2) is also 1.

Now let (m,n) be a location in B( M1 o M2) which is 1.  This will be true only if the (m,n) entry of M1
o M2 is non-zero.  Since all entries of M1 and M2 are non-negative, (M1 o M2)(m,n) > 0.  This entry
of M1 o M2 is the inner product:

(row m of M1) * (column n of M2)

so the inner product is positive.  This is possible only if there is a k so that the kth entry in each of these
vectors is non-zero.  This means that for some k, the kth entry of row m of M1 and the kth entry of
column n of M2 are both 1, i.e.,:

M1(m,k)=1

M2(k,n)=1.
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This means that vm influences vk and vk influences vn.  Therefore, vm influences vn, showing that M,
the representation of (R1 o R2), has a 1 wherever B( M1 o M2) has a 1.

Combined with the earlier result, it is evident that the two matrices M and B(M1 o M2) have the same
set of 1's.  Since both matrices have only 1 and 0 entries, the matrices are equal.

For example, in KB 1, B influences DI, as indicated by the 1 in the (B,DI) entry of the immediate
dependency relation of KB1.  In table 6.1, this appears in the (2,5) location.  Likewise, DI influences
INV, and the (5,7) entry of the table is 1, meaning that multiplying the table by itself, when the inner
product of row 2 by column 7 is computed, the 1's in position 5 cause the inner product to be non-
zero.  This represents the fact that variable 2 (B) influences INV, variable 7, through the intermediary
of variable 5, VI.

Table 5.5 shows the matrix product of the immediate dependency relation by itself.  In this case, it is
also the Boolean composition operation.

Table 5.5:  Matrix Product of the Dependency Relation by Itself

immediate dependency LC B S LT DI RT INV

luxury car (LC) 0 0 0 0 0 0 1

boat (B) 0 0 0 0 0 0 1

stocks (S) 0 0 0 0 0 0 1

lottery tickets (LT) 0 0 0 0 0 0 1

discretionary income (DI) 0 0 0 0 0 0 0

risk tolerance (RT) 0 0 0 0 0 0 0

investment (INV) 0 0 0 0 0 0 0

Power:  If R is a relation,

R**1 = R

R**(n+1) = R o (R**n).

The power relation finds those variables which influence a variable through a chain of intermediate
variables of some particular length.  For R**n the chain of intermediate variables is of length n-1.

If M represents R and M**n is the product of n Ms, then B(M**n) represents R**n.

The previous table shows R**2 when R is the immediate dependency relation.  Higher powers of the
immediate dependency relation are empty (all zeros in the matrix representation).

Theorem 5.2:  M**n represents the indirect influence of variables with n-1 intermediate variables.
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Proof:  Theorem 5.2 follows from Theorem 5.1 by mathematical induction.

Union:  If R1 and R2 are relations with the same domain and range, the relation (R1 U R2) is the
relation such that x (R1 U R2) y iff x R1 y or x R2 y.

The union and composition operations are used to build relations about dependency through multiple
levels of inference.  For example, if x D2 y, if and only if x influences y, directly or through an
intermediate variable, D2 = D U D o D, where D is the intermediate dependency relation and o is the
composition operation.

Theorem 5.3:  If Mi represents Ri, B(M1+M2) represents R1 U R2.

Proof:  B(M1+M2)(i,j) = 1 iff M1(i,j) or M2(i,j).  Iff x is the ith variable and y is the jth variable,
M1(i,j) or M2(i,j) iff x R1 y or x R2 y, i.e.

x (R1 U R2) y.

Figure 5.2 represents:

R U (R**2)

where R is the immediate dependency relation of KB1.

Accumulation:  The accumulation operator R *a n is defined as follows:

R *a 1 = R

R *a (n+1) = (R *a n) U (R ** (n+1))

The accumulation R *a n of a relation finds all the variables that influence a variable through a chain of
n-1 or fewer intermediate variables.

Theorem 5.4:  R *a n represents the dependency relation between n-1 or fewer intermediate variables.
If M represents R, B(M *a n) represents R *a n.

Proof:  This follows from Theorems 5.2 and 5.3.

Dependency:  The relations { lim R *a n } form an increasing sequence of relations, i.e., if (x,y) is in
*a n, (x,y) is in *a m for m >= n.  Therefore, the limit of this sequence as n --> infinity exists, and is
equal to the union of the R *a n for all n.  This limit will be called R*d.

Define the dependency relation D(R) as follows: x D(R) y iff the variable x influences the variable y.  It
is only possible for x to influence y if there is some (possibly empty) chain of intermediate, e.g., x, z1,
..., zn, y such that each variable influences its successor, i.e., each successive pair of variables is in the
relation R.  However, then x R**(n+1) y, so x (R *a n) y,

so x R*d y, and D(R) <= R*d.
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However, if x R*d y, for some n, (x,y) R*a m for m > n (by definition of limit).  Pick an m0 > n.  Then
x R*a m0 y, so for some m1 <= m0,

x R**(m1) y.  Then there is a chain of m1+1 intermediate variables, z1,...zm1+1 such that
x,z1,...,zm1+1,y is a sequence in which successive variables are in R, and R*d < D(R).

Combining this with the previous result proves theorem 5.5.

Theorem 5.5:  The limit R*d of the accumulation relations represents the dependency relation D(R).

Since both the sequences {B(M*n)} and {R*n} are monotone increasing and have only a finite number
of possible values, each of these sequences is eventually constant.  That constant is the limit of the
sequence.  Pick an n0 great enough so that each sequence has reached its limit.  By Theorem 5.4, B( M
*n0 ) represents R *n0 where M represents R.  Since equal matricies represent equal relations, the
limits can be substituted in this "represents" relation, proving

Theorem 5.6:  The matrix lim(n->infinity)(B(M *a n)) represents D.

The dependency relation represents the relation that is true for all variables that influence a given
variable, and false otherwise.  Figure 5.2 is the accumulation of the immediate dependency relation of
KB1.  An entry in the table is 1 iff the variable on the right is dependent on a variable on the left.

To compute the dependency relation from the immediate dependency relation:

• Compute in sequence each R *a n.
• When the R *a n no longer change, the current R *a n is the dependency relation R*d.

Table 5.6. shows the dependency relation of the immediate dependency relation of Knowledge Base 1.

Table 5.6:  Immediate Dependency Relation of KB1
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LC B S LT DI RT INV

luxury car (LC) 0 0 0 0 1 0 1

boat (B) 0 0 0 0 1 0 1

stocks (S) 0 0 0 0 0 1 1

lottery tickets (LT) 0 0 0 0 0 1 1

discretionary income (DI) 0 0 0 0 0 0 1

risk tolerance (RT) 0 0 0 0 0 0 1

investment (INV) 0 0 0 0 0 0 0

Finding Functions in a Knowledge Base
To carry out a partition of a knowledge base based on function composition, it is necessary to find
functions embedded in the knowledge base.  In particular, the goal is to find subsets SI and SO of the
knowledge base variables such that the:
• Values of SO are a function of the inputs in SI.
• Variables in SI are used at most infrequently outside this function.

Choosing the Output and Input Variables of a Function

Each column vector in the dependency relation matrix shows which variables influence each other.  For
example, the first 4 columns of the dependency matrix for KB 1 are all 0s, because these are input
variables and are not influenced by any other variables in the KB.  Discretionary income (DI) has 1's for
the two variables that influence it, namely the boat and luxury car.  Investment has nearly all 1's,
because all variables except itself influence its value.

To find the set of variables whose Cartesian product will be the output of a function in the KB, cluster
via high correlation the column vectors in the table.   The clusters should be performed in such a way
that all members of a cluster are highly correlated with each other, indicating that all the variables
computed by a function use about the same set of input variables.

The variable clusters of the dependency relation of the immediate dependency relation of Knowledge
Base 1 are:

{luxury car, boat}

{stocks, lottery  tickets}

{discretionary income, risk tolerance}

{investment}
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Once a set of output variables has been chosen, the set of input variables for the function consists of the
union of all variables for each member of the output variable set.  Table 5.7 shows variable clusters of
the dependency relation of KB1.

Table 5.7:  Variable Clusters of the Dependency Relation of KB1

VARIABLE CLUSTER INPUT VARIABLES
{LC, B, S, LT} none
{DI} {LC,B}
{RT} {LT,S}
{INV} {DI,RT}

Finding the Knowledge Base that Computes a Function

In the previous section, the input and output variables were computed for a set of functions that
partition the knowledge base.  Table 5.4 illustrates this partitioning for knowledge base 1.

Given the input and output variables for a function, the subset of rules and functions in the knowledge
base used to compute that function can be found as follows.  Note that the input and output matrices
from which the immediate dependency relation is computed are used in this computation.  Refer to
Computing the Immediate Dependency Relation for details about computing these matrices.

1. Start with the output variables of the function.  Set the current unprocessed output variables to the
set of output variables.  Start with an empty set of rules and KB functions in the KB subset
implementing the function; call the set of implementing and rules IMP.

2. For each current unprocessed output variable y, and each function or rule f which has y as an
output, add f to IMP.  Remove y from the set of unprocessed output variables.

3. For each f added to IMP, examine all x such that x is an input to f.  If x is not an input to the
function for which a KB is being computed, add x to the set of unprocessed output variables.

4. Continue this process until the set of unprocessed output variables is empty.

Hoffman Regions

For logical completeness and consistency of an expert system, an important concept is the Hoffman
regions (suggested by Roger Hoffman of FHWA).  If V1...Vn are the variables of a knowledge base,
with domains D1...Dn respectively, a Hoffman region is a maximal subset of the input space, the
Cartesian product D1x...xDn, on which each atomic formula in the knowledge base has a single truth
value.  For any knowledge base, there is a unique set of Hoffman regions that cover and partition the
input space.

A run of an expert system is completely determined by the values of the atomic formulas that appear in
the KB rules.  Provided that the expert system does not use external numerical software, there is no
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need to run two different test cases that evaluate the same on all the atomic formulas.  If two different
test cases evaluate some atomic formula differently, however, the firing of some rule, and hence the
results of the expert system, may differ between the two test cases.  Therefore, the set of test cases that
must be tested are in 1-to-1 correspondence with the regions where all the atomic formulas have the
same value.  These regions where the atomic formulas are the same are called Hoffman regions.

Each point in input space determines truth values for each of the atomic formulas in the knowledge
base.  A relation H(P1,P2) can be defined on input point spaces as follows: H(P1,P2) is true if and only
if P1 and P2 determine the same set of atomic formula truth values for all atomic formulas in the KB.
H so defined is an equivalence relation, and partitions the input space into mutually disjointed regions
that cover the input space.

It is generally not possible to find simple, exact descriptions for all the Hoffman regions when a
knowledge base contains atomic formulas that contain several variables, e.g., exp(X)<Y^3.  It is
possible, however, to find an approximate set of Hoffman regions of descriptions such that:

• Every Hoffman region is in the approximate set of Hoffman regions.
• A member of the approximate set of Hoffman regions is either a Hoffman region, or is the empty

set, i.e. is an empty region of input space.

The set of possible Hoffman descriptions D can be computed as follows:

• For atomic formulas containing two or more variables, the Hoffman regions of these atomic
formulas are TRUE and FALSE.

• Sort all the atomic formulas containing only one variable into subsets, putting all the formulas
containing the same variable together.

• Normalize formulas containing relation operators so that the variable appears on the left.
• Lexically sort the formulas for each variable as follows:

• The major sort is by the right side of the formula.

• The minor sort is by relational operator, where the relation operators in ascending order are: <,
<=, =, >=, >.

• Create a set of intervals for each numerical variable that:
• Cover the real line, or at least the possible domain of the variable.

• For all points in any interval, the truth values of the atomic predicates (of that single variable)
are the same.

• The intervals are maximal, given the truth value constraint.

• For each string variable, let the Hoffman regions be the list of values that appear in the KB.
• Let the Hoffman regions of the KB as a whole be the Cartesian product of the Hoffman regions for

the individual variables.

Note that in KB’s with atomic formulas with more than one variable, the use of TRUE or FALSE as
the Hoffman regions is a compromise to avoid having to decide exactly when combinations of these
formulas are true.  This means that some Hoffman regions may be unsatisfiable.  Therefore, if
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exhaustive testing shows an inconsistency in some Hoffman region which is partly defined by atomic
formulas of more than one variable, there are two possibilities:

• The Hoffman region is unsatisfiable, so the expert system is OK.
• The Hoffman region is satisfiable, and the expert system has an inconsistency.

If a Hoffman region is found where the expert system is inconsistent, it should be determined whether
the Hoffman region is satisfiable.  Table 5.8 illustrate this concept.

Table 5.8:  Hoffman Regions for KB1

LC=yes
B=yes
LT=yes
S=yes

LC=yes
B=yes
LT=yes
S=no

LC=yes
B=yes
LT=no
S=yes

LC=yes
B=yes
LT=no
S=no

LC=no
B=yes
LT=yes
S=yes

LC=no
B=yes
LT=yes
S=no

LC=no
B=yes
LT=no
S=yes

LC=no
B=yes
LT=no
S=no

LC=yes
B=no
LT=yes
S=yes

LC=yes
B=no
LT=yes
S=no

LC=yes
B=no
LT=no
S=yes

LC=yes
B=no
LT=no
S=no

LC=no
B=no
LT=yes
S=yes

LC=no
B=no
LT=yes
S=no

LC=no
B=no
LT=no
S=yes

LC=no
B=no
LT=no
S=no

When is a Partitioning Advantageous

Let CH(KB0) be the cardinality of the Hoffman region set of knowledge base KB0.  The worst case in
proving a result on a knowledge base KB with sub-KB KB1 is, using the result of the previous section,
CH(KB1) + CH(~KB1).  If this number is significantly smaller than CH(KB), the partitioning pays off
in reducing the size of a VV&E problem.

Hoffman Regions of Partitioned KB1

The KB can be split into the following pieces:
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• Final conclusion KB:  This contains rules 1 and 2, and determines the type of investment.
• Risk tolerance KB:  This contains rules 3 and 4, and determines the comfort level of the client

regarding risk.
• Discretionary income KB:  This contains rules 5 and 6, and determines whether the client has

discretionary income.

Each of these KB’s has two input variables each with two values, or four Hoffman regions.  Therefore
the total number of Hoffman regions after partitioning is twelve, a 25 percent reduction.  A greater
reduction is found in many larger knowledge bases.
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6. Knowledge Modeling

This chapter presents some knowledge models that can be used to partition knowledge bases using
expert knowledge.  The chapter includes:

• Definition of knowledge models.
• Using knowledge models for VV&E.
• Using knowledge models in the expert system lifecycles.
• Some example knowledge models.
• Proof techniques for specific knowledge models.
• Specific knowledge models

Appendix A presents some mathematical results used in the chapter about partitioning using the clear
box methodology.

Introduction

Knowledge models are high level templates for expert knowledge.  Examples of knowledge models are
decision trees, flowcharts and state diagrams.  By organizing the knowledge, a knowledge model helps
with VV&E by suggesting strategies for proofs and partitions; in addition, some knowledge models
have mathematical properties that help establish completeness, consistency or specification satisfaction.

More particularly:

• The knowledge model highlights the main points of a knowledge base, often obscured in the
knowledge base.

• A knowledge model partitions a large KB into smaller, easier to verify, pieces.
• There are mathematical properties of the knowledge model that help establish the correctness of a

knowledge base.

An Example of a Knowledge Model

PAMEX (Pavement Maintenance Expert System) is an expert system for pavement maintenance
management [Aougab et. al., 1988].  A top level model of PAMEX consists of a partition of the
problem space on the following three variables:
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• Level of information about the pavement; the 3 values are extensive, some and little or none.
• Range of pavement serviceability index (PSI); the 3 values are above 2.8, between 2.8 and 2.0, and

below 2.0.
• The level of treatment desired; the 3 values are long-range, mid-term and short-term.

For each of the twenty seven regions formed by the Cartesian product of the three regions on each
variable, there is a small expert system that handles problems in that region.  These small expert
systems use the same pavement variables, i.e., PSI and other more specific pavement measurements.
In this case, the model is a decision tree, discussed and illustrated in the next section.

Using Knowledge Models in VV&E

The steps in using a knowledge model in VV&E are:

• Collect the knowledge model from:
• The domain expert(s) working on the project.

• Standards documents in the domain.

• Notes from knowledge acquisition at the time an existing system was built.

• Validate the knowledge; see Chapter 9 on knowledge validation for details.  This step is to ensure
that the knowledge going into the expert system represents correct expert knowledge.

• Prove the expert system using the knowledge model is complete, consistent and satisfies its
specifications; this chapter, as well as chapters on partitioning and small systems, provides
information on how to develop these proofs.

Decision Trees

Introduction

A decision tree is a set of decisions that partitions the input space into a set of disjoint regions that
cover the entire input space.  In a decision tree system, a sequence of decisions based on user input and
other data are used to classify the input problem before going on to the rest of problem solution.

The top of the decision tree corresponds to the start of the decision process.  At each interior node of a
decision tree, the problem is supposed to be assigned to one and only one of the subnodes.  The
solution of the detailed problems is often handled by specialized expert systems tailored to the
specialized situations found by the decision tree.

Definition

A decision tree expert system has a structure that is described by a tree.  A decision tree system has the
following properties:
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• Each interior node of the tree has a variable or expression assigned to it.
• Each edge to a subtree is labeled with a set of values for that variable or expression on the parent

node.
• All possible values of a variable are on some edge.
• No variable value is on two different sibling edges.
• Associated with each leaf node is a subsystem or output(s).  A subsystem at a tip node N of a

decision tree is called to solve the problems for which variables appearing in the tree have values
associated with the path that leads to N.

Example

A decision tree for PAMEX is illustrated in figure 7.1 of the following page.
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PAMEX Decision Tree
Start

No Info

PSI < 2.2 PSI>=2.2 & PSI<=2.8 PSI > 2.8

Long

Medium

Short

Long

Short

Medium

Long

Medium

Short

Some Info

PSI < 2.2 PSI>=2.2 & PSI<=2.8 PSI > 2.8

Long

Medium

Short

Long

Short

Medium

Long

Medium

Short

Complete Info

PSI < 2.2 PSI>=2.2 & PSI<=2.8 PSI > 2.8

Long

Medium

Short

Long

Short

Medium

Long

Medium

Short

LEGEND
PSI: Pavement Serviceability Index

Info: the amount of information
available about the pavement

short, medium, long term: the time
period for which the fix is made,
subject to budget constraints Pavement Maintenance Expert System

Figure 6.1:  Pamex DT
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Use During Development

Decision trees are a useful way to organize expert knowledge.  Their use is indicated when the expert
can describe in what order information is obtained and used to partially determine a solution.  Drawing
a decision tree from information the expert(s) have provided is a good way to present the knowledge
engineer's conception of the information back to the domain expert for validation.

Use During VV&E

To model an expert system as a decision tree for the purpose of showing correctness, the following
conditions should be satisfied:

• Each possible set of inputs should be in one and only one of the partitions generated by the decision
tree.

• For each partition, there is an expert system (a subsystem of the entire system) that correctly solves
problems in that partition.

• Experts validate the decision tree.
• The expert system assigns each input to the correct partition as the result of a finite computation.

To prove completeness of an expert system modeled by a decision tree, prove the following:

• Each possible problem in the input space is assigned to some partition of the decision tree.
• Each expert system assigned to one of the partitions computes a solution for each problem

assigned to it.

To prove consistency of an expert system modeled by a decision tree, prove the following:

• Each possible problem in the input space is assigned to at most one partition of the decision tree.
• Each expert system assigned to one of the partitions computes at most one solution for each

problem assigned to it.
• Each computed solution is internally consistent.

To prove satisfaction of a requirement of an expert system modeled by a decision tree, it needs to be
shown that the requirement is satisfied for the expert system associated with each tip of the decision
tree.

Ripple Down Rules

Introduction

Ripple down rules (RDR’s) [Kang, et al, 1994.] are a special case of decision trees for reasoning with
defaults.  RDR’s are guaranteed to be complete and consistent.
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Definition

With ripple down rules, the knowledge base is organized as lists of rules.  If the conditions ("if" part) of
a rule are satisfied, then the expert system moves to the part of the knowledge base attached to this
rule.  In some cases, this is another list of rules.  If so, the expert system tests the rules in the sublist.  If
there is no sublist of rules, or if none of the sublist rules are satisfied, then the conclusions "then part" of
the rule is used.  Figure 6.2 demonstrate an example of a small expert system for vehicles classification.

Example

As an example, a small expert system for vehicles classification is presented.

The main list is:
L1.1:   If NOA (Number -of Axles) is 2

Try List 1-1; Default = Car.
L1.2:   If NOA is 3,

Try List 1-2; Default = 3 Axle-single unit Truck.
L1.3:   If NOA is 4,

Try List 1-3; Default = 4 Axle-single unit Truck.
L1.4:   If NOA is 5,

Try List 1-4; Default = 5 Axle-single unit Truck.
etc.
Here are the lists that fill out the next level of the knowledge base; note that this is not an exhaustive
knowledge base.
L1-1.1:   If S1 <= 12, it is a Car-Van-Pick up.
L1-1.2:   If S1 <= 20, it is a 2 Axle-single unit Truck.
L1-1.3:   If S1 > 20, it is a 2 Axle Bus.

L1-2.1:   If S1 <= 12 & 8 < S2 <= 18, it is a Light Vehicle w/ Single Axle Trailer.
L1-2.2:   If 7 < S1 <= 20 & S2 <= 8, it is a 3 Axle-singular unit Truck.
L1-2.3:   If S1 > 20 & S2 <= 8, it is 3 Axle Bus.
L1-2.4:   If Else, it is a 2 Axle Tractor w/ Singular Axle Trailer.

L1-3.1:   If S1 > 7 & S2 + S3 <= 12, it is a 4 Axle-singular unit Truck.
L1-3.2:   If S1 > 7 & S2 <= 8 & S3 > 6, it is a 3 AxleTractor w/ Singular Axle Trailer.
L1-3.3:   If Else, it is a 2 Axle Tractor w/ Tandem Axle Trailer.

L1-4.1:   If S2+S3+S4 < 16, it is a 5 Axle-singular unit Truck.
L1-4.2:   If S2 <= 8 & S4 <= 10.5, it is a 3 Axle Tractor w/ Tandem Axle Trailer.
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L1-4.3:   If S2 > 8 & S3 + S4 <= 12, it is a 2 Axle Tractor w/ Tridem Axle Trailer.
L1-4.4:   If S2 > 8 & 12 < S3 + S4 <= 16, it is a 2 Axle Tractor w/ Tridem Axle Trailer Split.
etc.

Figure 6.2:  Example ES (continued)

Similar rule lists could expand lists 1-3 and 1-4.

The expert system starts the example and the system moves to list 1-2 (likewise for the other L1 rules).
If none of the entry conditions to the rules in list L1 is satisfied, the default of L1, car, is the KB
conclusion.

Under the condition that NOA is 3, the system moves to list 1-2 and if none of the entry conditions to
those rules is satisfied, the default of L2, axle-single unit truck, is the KB conclusion.

Use During Development

Kang et al., 1994 point out that it is possible to add correction rules to a running ripple down rules
expert system.  Whenever an error occurs, that error gets added to the last list of rules which the
system tried before choosing an erroneous default.

Ripple down rule systems are ideally suited to problems where knowledge has the following structure:

• Early decisions made on a problem narrow the range of possible solutions, while later decisions
pick particular solutions from a selected class.

• There is a default solution at each stage of the solution process.

Changing a Ripple Down Rule System

Ripple down rules are a special type of decision tree.  For a knowledge base that consists of a series of
more detailed decisions, but where the bases of the more detailed decisions vary for different points of
the decision tree, the ripple down rules model is appropriate.

Given: an RDR, and a rule (if C then A) which the algorithm should execute, the algorithm change
modifies the KB to make (if C then A) part of the system:

case 1:  Top level list of RDR is empty.

If default(RDR) = A, do nothing,

else insert (if C then A) as a 1-element list of RDR.

case 2:  The conditions on the first rule in the top level list of RDR = C.

Attach to the first rule the RDR with default = A and empty rule list.

case 3:  The conditions on the first rule subsume C.
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Replace the RDR attached to the first rule, denoted by R2, with change(R2).

case 4:  C subsumes the conditions on the first rule.

Replace the first rule with (if C then A).

case 5:  C and the conditions of the first rule can be simultaneously satisfied.

Insert (if C then A) before the first rule.

otherwise: Let RDR = H++T, where H is the first rule in the top level list, and T is the rest of the rules.
Insert (if C then A) in T.

Use During VV&E

Completeness of a RDR system follows from the following theorem:

A Ripple-Down-Rule System is Complete.

Proof: Note that part of an RDR system attached to a top level rule is itself an RDR system.

Define the level of an RDR system as follows:  If the system has only 1 rule list, it is of level 1.  If the
system has N+1 rule lists, then it has level 1+Max(level of RDR subsystems of the top level rule list).

Let R be an RDR system of level N+1.  Assume all RDR systems of level N are complete.  For any
input, either some top level condition is satisfied or not.  In the latter case, the system concludes the
default.  In the former case, the system finds the conclusion computed by RDR rules from the first
satisfied top level rule.  If there is a rule list associated with that condition, the conclusion is from an
RDR system of level at most N, and so exists.  If there is no rule list, the conclusion is from the
condition itself.  Therefore an RDR system produces a conclusion in all cases.

In a similar way, it can be proven that all RDR systems are consistent.  Consistency, however, requires
an additional check: that the conclusions associated with each path through the ripple down rule tree
are consistent.

Satisfaction Of Specification:  To verify that an RDR satisfies a proposition P:

1. Verify or modify the default of the top level rule set.

2. Verify or modify the first rule, if any in the top level list to satisfy P.

3. Verify or modify the RDR system attached to the first rule, if any.

4. Let RDR = H++T, where H is the first rule in the top level list, and T is the rest of the rules.  Verify
or modify T to satisfy P.

Generalizations Of RDR:  A generalization of RDR systems occurs when the conditions in RDR rules
are replaced with specialized expert systems whose purpose is to make the decision specified in the if
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part of the RDR rule.  When, in an ordinary RDR system an RDR rule if part is evaluated, a
generalized RDR system may call an expert subsystem.  This is a backward chaining process although
RDR systems are more structured than general backward chaining systems.

The same algorithms for VV&E on RDR systems also work for generalized systems, provided that the
expert subsystems carry out the tests provided in the rule condition that the subsystem replaces.

State Diagrams

Introduction

A state diagram is a useful formal representation for the top level of process control expert systems.

Definition
A state diagram system is one where there is a unique state at every step of a solution, and at each
state, there is a function that determines the next state.

Example

A state diagram can be used to model driver behavior on a road segment.  A set of states indicates the
situation and/or goal of the driver.  For example, some possible states are:

• Distance ahead too small.
• Clear road ahead.
• Approaching desired exit.

A driver model based on these states is shown below.  The case statement branches on the value of the
variable state.

state = start_loop;
while ( state is not equal to exit )
case (state)
[
 case start_loop:

if (distance ahead is too small)
state = distance ahead too small;

else (approaching desired exit)
state = exit;

else (clear road ahead)
state = clear road ahead;

else delay a small time increment;
 case clear road ahead:

if (current speed < desired speed)
increment speed;

delay a small time increment;
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state = start_loop;
 case distance ahead too small:

if (current speed < desired speed)
{ if (passing possible)

pass;
  else decrease speed; }

delay a small time increment;
state = start_loop;

 case exit;
return any current useful information to calling program

}

In this example, the decision to pass may be made by another expert system.  In addition, fuzzy logic is
often used to assign a membership grade representing how much the current situation belongs to each
of the possible states.  In this case, the expert system chooses a state with the highest membership
grade and executes the code associated with that state.

State Diagram Systems Represented as Rules:  Systems based on state diagrams may be encoded into
expert system rules.  The following include two of the rules that would implement the above example
in rule form:

if state = start_loop
and distance ahead is too small
then state = distance ahead too small.

if state = start_loop
and approaching desired exit
then exit and return information to calling program

if state = start_loop
and clear road ahead
then state = clear road ahead

if state = start_loop
and not ( distance ahead is too small

or approaching desired exit
or clear road ahead)

then delay a small time increment
if state = clear road ahead

and current speed < desired speed
then increment speed

and delay a small time increment
and state = start_loop;

if state = clear road ahead
and current speed >= desired speed
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then and state = start_loop;
if state = distance ahead too small

and current speed < desired speed
and passing possible
then pass

and delay a small time increment
and state = start_loop

if state = distance ahead too small
and current speed < desired speed
and not passing possible
then decrease speed

and delay a small time increment
and state = start_loop

if state = distance ahead too small
and current speed >= desired speed
then decrease speed

and delay a small time increment
and state = start_loop

Use During Development

State diagram models are useful during development when expert knowledge has the following
characteristics:

• The problem solution consists of a series of distinct steps.
• Which step to choose is a complex, but knowledge-based decision.
• The possible paths through the steps may contain loops.

To run such a rule-based system based on state diagrams generally requires an inference engine that
can do both forward and backward chaining with the same knowledge base in a strategy called forward
chaining with local backward chaining.  In this strategy applied to the knowledge base forward chaining
keeps applying rules until a rule containing the command to exit the knowledge base fires.  Backward
chaining is used to establish the conditions within the rules, e.g., passing possible in the above example.

Use During VV&E

Completeness of a state diagram system can be established by showing that for any inputs  the system
eventually reaches a final state where it returns information and exits to the calling environment.  In a
complex system in which the predicates that control transitions between states are themselves expert
systems, the proof of completeness is hierarchical:

1. Assume that the expert subsystems satisfy their specifications.  Using this information, prove that
the system reaches a final state.
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2. Prove that the expert subsystems satisfy their specifications, and also that they terminate for any
possible inputs.

Since a table of one value for each of a set of variables is consistent, state diagram systems that return a
set of variable values when they reach a final state are logically consistent.  The set of variable values
may be unsatisfiable, however, given the specifications for the expert system and expert knowledge
about the domain.

To show that the output of a state diagram system satisfies a specification for the expert system
demonstrate that:

• For each state, if the specifications are satisfied on entering the state, they are also satisfied when
leaving the state.

• The specifications are satisfied at the start state.  Often the specifications are trivially satisfied at the
start state, because the values of output variables are unknown.

• The system always reaches a final state.

Satisfaction Of Specifications:  To prove that a specification for a state diagrams is satisfied, one
should prove that for any input in the input set of the specification, the state diagram  eventually
reaches a final state in which the requirements of the specification are satisfied.

Flowcharts

Introduction

Flowcharts are another method for recording expert knowledge and can serve as a model for the
knowledge in an expert system.

Use During Development

Flowcharts can be implemented best by using a procedural programming language, i.e., a language that
permits:

• Blocks, i.e., sequences of statements used as a single statement.
• Branching statements, e.g., if-then-else or switch statements.
• Loops, e.g., while, do and for loops.
• Function calls, permitting a procedure to call other procedures or itself.

If, however, some procedural knowledge is included in a largely non-procedural knowledge base and
the available implementation shell does not permit procedural programming, it may be more convenient
to encode the procedural knowledge in rules.
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In this case, a flowchart can be represented in rule form by associating a state with each box in the
flowchart and by writing rules that describe the transitions between boxes represented by the lines in
the flowchart.

Use During VV&E

Completeness, consistency, and satisfaction of specifications for flowcharts are similar to the problems
for state diagrams.

If the effect of the flowchart is to set variable values, slot values on objects, or build other data
structures, the logical statements represented by these structures can usually be satisfied.  The result of
the flowchart is logically consistent but not necessarily consistent with the specifications for the expert
system or other expert knowledge about the application domain.

Consistency:  Flowcharts need not produce consistent output even when:
• The flowchart always reaches an exit box.
• All of the variables that are outputs of the system have a unique value.

If, however, all possible tuples (ordered list of variables) of output variable values are consistent i.e.,
for any assignment of values to output variables, it is logically possible, and consistent with domain
expertise, for the variables to have those variables simultaneously.  Then, if for all inputs, the flowchart
defines unique values for all the output variables, the flowchart is consistent.

Completeness: A flowchart is logically complete, if no matter what the inputs, the flowchart always
reaches an exit box.  For this to be true, the one must prove that:
• The computation eventually exits from any loop entered within the flowchart.
• All functions called within the flowchart satisfy their specifications for all inputs and  perform their

computation in a finite time.

Satisfaction Of Specifications:  To show that a flowchart system satisfies its specifications, the basic
strategy is to show that if the specifications are satisfied on entry to each box in the flowchart, they are
satisfied on exit from the box.  Specifications are generally satisfied before the initial box because
variables are not yet set to values, but indicating that specifications are satisfied at the start is a
necessary part of the proof of specifications.
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If box A of the flowchart has just one exit line L going to box B, then A, B, and L represent a sequence
of separate computations.  To show that this part of the flowchart satisfies the specifications, one
should demonstrate that:
• The computations in A and B can always be carried out in only finite time.
• If the specifications are satisfied on entry to A and B, they are satisfied on exit.  In proving the

specifications for B the user can assume the results of the computations in A, in addition to the
specifications that were assumed on entry to A.

If box A of the flowchart performs a test to decide a proposition P, and if A has exits to box B if P is
true and box C if P is false, then the user must demonstrate that:
• The specifications are true at the exit box(es) when starting at B with the assumption of the

specifications plus P, and that the computation always reaches an exit box in a finite computation.
• The specifications are true at the exit box(es) when starting at C with the assumption of the

specifications plus not P, and that the computation always reaches an exit box in a finite
computation.

If a flowchart contains a loop, one must demonstrate that, for all inputs satisfying the specifications, the
following criteria are met:

• The specs are true on exit from the loop.
• Given the following assumptions at the loop exit:

• The specifications.

• The results of computations in the loop.

• The conditions for exit from the loop.

The flowchart computation reaches an exit box in finite time and the specifications are true when
reaching the exit box.

Functionally Modeled Expert Systems

Introduction

As discussed in the chapter on partitioning without expert knowledge (see Chapter 5), an expert
system can be thought of as a function.  A function maps sets of inputs (information the expert system
receives from the user or other external sources) into a set of outputs reflecting actions taken and
conclusions inferred by the expert system.  Ideally, the function that an expert system represents is that
which maps each set of problem inputs into the set of actions and inferences that an expert would make
given those inputs.  The expert system will be said to implement this function, and the function will be
said to model the expert system with the understanding that an expert system only approximates the
behavior of an expert.

Some functions are built from simpler functions with operations such as (function) composition or
Cartesian product (operations discussed in more detail below).  Sometimes, because of domain
knowledge, the expert system should represent a function that is constructed from simpler functions.  If
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that is the case, the structure of the function provides the knowledge engineer with tools for structuring
and partitioning an expert system.

More particularly, the operations of Cartesian product and function composition in the category of
functions are of particular importance in modeling expert systems.  Let E be an expert system such that
the output of E involves setting variables O1,...,On such that the values of the O’s are independent of
each other.  Then E implements the Cartesian product of functions fi such that Oi = fi(Ii), where Ii is a
subset of the inputs of the entire expert system found by computing the dependency relation (see
Chapter 6 on partitioning without expert knowledge) starting with Oi.

If one of the fi is a composition of functions, e.g.

fi = h( g1(Ii), ..., gm(Ii))

then using the same techniques of Chapter 6, one can find subsystems of the original expert system that
implement the g’s and h can be found.

As discussed in more detail below, if the expert subsystems are complete, consistent and satisfy
specifications, and if there is consistency and specification satisfaction among independently chosen
possible values of Cartesian component subsystems, the entire expert system is complete, consistent
and satisfies specifications.

Note that this does not mean that completeness, consistency and specifications satisfaction of arbitrary
subsets of an expert system imply corresponding results about systems as a whole.  The subsets must
be those that implement functions used to construct the function that models the expert system, and
certain additional requirements among the outputs of component systems must be met.

Expert knowledge is generally of great benefit in identifying:
• Independent outputs that can be used to decompose an expert system into a product of expert

systems.
• Intermediate hypotheses that are functions of the problem inputs but are themselves inputs to a

later function that produces some or all of the outputs of the system as a whole.

Following are some examples of composite functions which provide opportunities for structuring and
partitioning expert systems.

Use During Development

These strategies often simplify development by replacing a single development task with two or more,
which is less than the original task.  During VV&E, these strategies likewise replace a single VV&E
task with two or more development tasks where the total size is less than the original task.

In each of these cases, the key to whether the partitioning makes these problems smaller is found by
counting Hoffman regions.  If E is partitioned into E1,...,En, then if:

(H(E1)+...+H(En)) / H(E)
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is significantly less than 1, partitioning E into the Ei decreases the size of the development or VV&E
problem.  Note that usually, some rules and variables may be contained in more than one of the Ei.

Cartesian Product Systems:  Sometimes an expert system E is required to make more than one
decision, e.g., to find values for two different (sets of) variables.  In this case, the user can represent the
expert system function e of input I as:

e(I) = (e1(I), ..., en(I)).

Using the techniques of chapter 7, the user can find subsystems Ei which implement ei respectively.  If
H(X) is the number of Hoffman regions in expert system X, then if

(H(E1)+...+H(En)) / H(E)

is significantly less than 1, partitioning E into the Ei decreases the size of the VV&E problem.  [Note
that some rules and variables generally appear in more than one Ei.]

consistency: If each of the Ei is consistent, and if the union of consistent sets of output from each of
the Ei is consistent, the entire expert system is consistent.

completeness:  If each of the Ei is complete, the entire expert system is complete.

specification satisfaction:  Generally, proving that specifications are satisfied will involve consideration
of the interaction of the outputs of the Ei.  However, if a specification is of the form

If C1 and C2 ... and Cn then S (6.1)

then (6.1) is equivalent to the set of specifications

If (AND Ei satisfies Ci) then S.

Final Layer Partitioning: In final layer partitioning, the expert system is partitioned into:

• The final layer expert system that consists of all rules and functions that have as their direct outputs
conclusions of the knowledge base.

• Information gathering expert subsystems that conclude the inputs to the final layer system.

The final layer system contains all rules and functions that produce one or more of the conclusions of
the entire expert system.  The inputs of the final layer expert system are the inputs to these rules and
functions.  In KB1, the investment subsystem is the final layer expert system.

For each of the input variables to the final layer expert system, there is an expert system that determines
that input to the final level; that expert system can be found using the methods in the chapter on
partitioning without expert knowledge.  In particular, if the final level input variables are v1,...,vn, let
E1,...,En be the expert systems that set these variables.

Those Ei and Ej which overlap greatly, so that:
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(H(Ei) + H(Ej)) / H( Ei union Ej) >= 1

should be combined into a single expert system that produces both vi and vj.  If, on the other hand,

(H(Ei) + H(Ej)) / H( Ei union Ej)

is significantly less than 1, Ei and Ej should be kept separate.  Note that as described in the chapter on
partitioning without expert knowledge, clustering of vectors from incidence matrices can be used to
determine which of the information gathering subsystems to combine.

Partitioning into a final layer subsystem and information gathering subsystems is particularly useful
when there are many rules which compute outputs from the information gathered from the subsystems.
PAMEX is an example of such an expert system.   In this case, incompleteness or inconsistency in the
final layer expert system causes the same error in the entire expert system; furthermore, if there are
many rules in the final layer subsystem, such errors are easy to make.

Consistency:  The entire expert system is consistent when:

• The final layer expert system is consistent whenever it gets consistent inputs.
• Each of the information gathering subsystems is consistent.
• All unions of consistent output from each of the information gathering subsystems are consistent.

Completeness:  If each of the information gathering subsystems is complete and the final layer expert
system is complete, then the entire expert system is complete.

Satisfaction Of Specifications:   Generally, proving that specifications are satisfied will involve
consideration of the interaction of the outputs of the information gathering subsystems.

However, if a specification is of the form:

If C1 and C2 ... and Cn and Cf then S (6.2)

where Ci is a condition on subsystem Ei and Cf is a condition on the final layer,

then (6.2) is equivalent to the set of specifications:

If (AND Ei satisfies Ci)

and the final layer satisfies Cf,

then S is satisfied.

Intermediate Variables: Intermediate variables are variables that are computed or inferred from input
variables, and are used to infer or compute conclusions.
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Many expert systems can be decomposed into two sequential steps (an expert can often tell the user
about such a decomposition):

1. Determine the value of some intermediate variables.

2. Draw conclusions from these intermediate variables.

In addition, an intermediate variable is useful for partitioning only if some of the input variables of the
system as a whole are used for computing the intermediate variable.

In function notation, an expert system with an intermediate variable is of the form:

e(x1,...,xn) = e(x1,...,xk, y), where y = g(xk+1,...,,Xn).

Results about completeness, consistency, and specification satisfaction are entirely analogous to those
for final level partitioning.  However, the role of the final level expert system is that expert system
which implements the function:

e(x1,...,xk, y)

with inputs x1,...,xk and y.  This expert system can be found by the method in chapter 5.  The single
information gathering subsystem is:

g(xk+1,...,Xn).

Partitioning Of The Function Domain: Let E be an expert system which implements the function e(I),
where I is a vector of inputs.  Let the domain of I be some domain D, such that D is partitioned into
mutually exclusive subsets {Di}, i.e.,

Union{Di} = D

Di intersection Dj = NULL for i != j

Let Ei be the expert system that implements the function:

e restricted to Di

Then the following results relate correctness of E to the correctness of the Ei.

Consistency:  If each of the Ei is consistent, so is E.

Completeness: If each of the Ei is complete, so is E.

Satisfaction Of Specification: If a specification is satisfied by each Ei, it is satisfied by E.

Examples of domain partitioning occur in decision tree systems.  The effect of the decision tree is to
partition the entire domain of the expert system into subsets, each of which satisfies the conditions
along the path from some leaf node of the decision tree to the root of that tree.
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Verifying Knowledge Model Implementations

Overview

Knowledge models are useful for proofs because knowledge models may have certain  established
properties, such as consistency and completeness, that automatically apply to any system that uses the
knowledge model.  This means that one can simplify the task of proving something about an expert
system by showing that it uses a knowledge model.

However, nothing is free.  If one uses a knowledge model to establish the properties of a system, one
must show that the system actually uses, i.e. implements, the knowledge model.  This requirement is
explained below.

Implementation of a Knowledge Model

An expert system implements a knowledge model if:

• The data required by the knowledge model can be identified in the expert system

• The data used in the knowledge model is interpreted by the expert system according to the rules
required by the knowledge model.

For example, to show that a rule-based expert system implements a decision tree, it should be shown
that:

1. The expert system has rules that fire for each branch of the decision tree

2. The expert system gathers the information needed to select a branch in the decision tree

3. After gathering that information, the expert system selects the branch, i.e.  the expert systems the
subsystem attached to the branch determined by the just-gathered information.

Proofs Using a Knowledge Model

If a knowledge model is used to establish that an expert system has some property, there are two things
that need to be done:

1. Show that for a knowledge base that fits the knowledge model, the desired property is true.

2. Show that the expert system implements the knowledge model. How to do so is the subject of this
section.

EXAMPLE

Verifying a System based on Decision Tables

The KB1 demonstration expert system is shown in Figure 4.1.  The information in the knowledge base
is shown in the following decision tables.
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Example Decision Tables:

Investment Decision Table

Risk Tolerance yes yes no no

Discretionary
Income

yes no yes no

Investment Stocks Bank Account Bank Account Bank Account

Discretionary Income Decision Table

Boat yes yes no no

Luxury Car yes no yes no

Discretionary
Income

yes yes yes no

Risk Tolerance Decision Table

Lottery Tickets yes yes no no

Stocks yes no yes no

Risk Tolerance yes yes yes no

Analyzing KB1 With These Decision Tables

To illustrate verifying a knowledge base, the knowledge base expressed in the decision tables will be
accepted as correct; our current goal is to see that the code implementing the knowledge base contains
the information in the decision tables, and only that information.

The following tables shows which rules in Figure 4.1 implement which parts of the decision tables.

Rule Table Columns

1 Investment 1
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2 Investment 2 thru 4

3 Risk Tolerance 1 thru 3

4 Risk Tolerance 4

5 Discretionary Income 1 thru 3

6 Discretionary Income 4

To illustrate how this table is interpreted, Row 2 means that Rule 2 implements columns 2 through 4 in
the Investment decision table above.

Building the Rule/Decision Table Relation

The Rule/Decision-Table relation was created by inspection, but the information therein is actually the
result of simple mathematical reasoning that need not be done in detail, but which must be doable.  In
particular, it must be shown that whenever the conditions of one of the decision tree columns
associated with a rule are true, the rule produces the conclusions(s) of that column of the decision tree.
For example, choosing column 2 in the Investment decision table means that:

Risk Tolerance = yes

Discretionary Income = No

This causes Rule 1 to fail and rule 2 to succeed, producing the results of column 2 of the decision table.

It must also be shown that the only way for any rule to fire is to satisfy some column listed for it in the
Rule/Decision Table relation.  For Rule 2 this follows from the definition of OR, which requires that
one of its arguments is true.

The combination of the these two kinds of arguments show that the rules contain the same logical
information as the decision tables.   However, it is also necessary to show that the expert system
actually uses these rules for each branch of the decision tree.  This is because it is possible that the
inference engine might never fire a rule that would succeed if it were fired.  Therefore, to show that an
expert system actually implements the decision tree, one must show that the inference engine gathers
the necessary information, and fires the right  rules.

Verifying and Implemented Expert System Code

To illustrate this process, it will be shown that the implementation code in Clips, shown in Step 3.2 of
the Handbook finish this example, implement decision trees similar to those shown above.  [The Clips
code uses an additional criterion of amount of savings for discretionary income, so the decision trees
do not exactly apply to its knowledge base.]
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First, we show that Clips gathers the information needed to run the decision tables.  Rules a-5c and 3a-
3b gather this information.  These rules contain only conditions in their if parts that are satisfied when
Clips starts, so these rules will be fired, since Clips is forward chaining.

Here we are using properties of Clips described in the User Reference, and are assuming that Clips
meets its specifications.  This means that we are proving that our knowledge base is correct, assuming
Clips meets the specifications we use in the proof.  This makes our knowledge base correct conditional
on the correctness of Clips, but this is a reasonable compromise in practice.  It is much more likely that
something new will contain an error than a well-used program like Clips.  However, it should be noted
that errors have been found in much simpler library programs than Clips, and that in safety-critical
systems, the assumptions made about Clips should be verified by testing.

Given that the rules 5a-5c and 3a-3b fire, information needed to put the current problem  being run on
Clips into some columns of the risk tolerance and discretionary income tables is gathered.  This
information creates conditions under which 5d and 6 can fire, according to conditions in the
rule/decision table relation table.  This determines the value of discretionary investment. Similarly, rules
3c and 4 have enough information to be fired by Clips' forward chaining inference engine.  This
provides the information needed to fire the rules in the investment subsystem (rules 1 and 2).  As a
result, in all situations, the relevant rules fire.  The determination of which rules fire under various
decision table conditions is determined by the rule/decision table relation constructed using rules 1, 2,
3c, 4, 5d, and 6.  Comparison of these rules with the decision tables, as illustrated above, complete the
proof that the Clips system implements the decision tables.

Verifying a System based on State Diagrams

The State Diagram Relation

Following is a table that represents the example state diagram implemented in procedural pseudocode
in the VVE Handbook:

State: Actions Condition Actions Next State

start: _

start distance ahead too
small

_ distance too
small

start approaching desired
exit

_ approaching
desired exit

start clear road ahead _ clear road

start default small delay start

clear road: _ current speed < increment speed, start
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desired speed small delay

clear road default small delay start

distance too small desired speed and
passing possible

pass, small delay start

distance too small default decrease speed,
small delay

start

exit: return info to
calling program

The state diagram table has the following meaning:

STATE : ACTIONS names the state and lists actions that are taken when the state is entered. For
example, exit : return info to calling program means that on entry to the state exit, return info to calling
program is executed.  When there is no action to be executed, The dash (-) is used after the state name
when there is no action to be executed.

CONDITIONS denotes the entry conditions for a path from the current state.  For example, the entry
condition for the 2nd. path from the start state is distance too small.  Paths from a state are tried in the
same order as listed in the table.  default may be used for the last path from a state to indicate that that
path is always taken if none of the earlier paths are.

ACTIONS denotes the actions taken once the conditions for a path have been satisfied.  These are
actions that are to be performed when transitioning between a particular pair of states.  For example,
the actions increment speed, small delay are performed when taking the start path from  clear road.

NEXT STATE denotes the next state to go to.  For example if the test distance ahead too small is
satisfied, the state distance too small is entered.

Showing Code Implements the Diagram Relation

To show that the program implements this state diagram, it is necessary to show that for each row in
the state diagram table:

1. There is code that implements the row.

2. That code is executed whenever the state for the row occurs.

3. Nothing else in the program interferes with the code implementing a row.

Condition 1 follows from the fact that there is a branch in the code for each row in the table. A
complete verification would identify the computational path for each row.  To illustrate the technique,
consider the row with the following values:
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state = clear road

condition = current speed < desired speed

actions = increment speed, small delay

next state = start

There is a case statement branch corresponding to the clear road state.  Both a small delay  and setting
the next state to start are executed whenever the clear road branch is entered, using the definition of
sequential statement execution in procedural languages.  Using the definition of if in procedural
languages, increment speed is executed whenever current speed < desired speed.

Condition 3 follows from the following two facts:

1. All code in the case statement implements some row in the table

2. The code for each row is executed only when the conditions for that row are satisfied.

Whoops -- A Bug!

In attempting to verify Condition 2, a bug in the code is found. The code for the exit state is never
executed.  This is because the condition for exiting the while loop succeeds whenever the state
becomes exit.  Even worse, the only return statement for the code occurs in the erroneously non-
executed code for the exit state.  As a result, the code shown here could return undefined values to its
calling context, propagating errors up through the program in which it is used.

The solution to this bug is to move the return statement to just below the while statement.  Were this
done, Condition 2 would be satisfied.

The above bug was not planted, but represents a bug in the code that the authors did not catch before
writing this section.  The fact that the bug was found while trying to carry out a verification proof
illustrates that the proof process exposes bugs by causing the developer to examine code greater detail
than when he or she merely inspects the code.
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7. VV&E for Small Expert Systems

Small expert systems are those for which direct proof of completeness, consistency, and specification
satisfaction are practical without partitioning the knowledge base.  This chapter discusses techniques
for these proofs.

The basic method for verifying properties of small systems is:

1. Represent the property to be verified as a logical formula.

2. Verify the logical formula using one of the following techniques:

• Verify the formula on a case-by-case basis, e.g., by checking each Hoffman Region.
• Apply Boolean algebra simplifications to verify the formula.

Completeness

To verify completeness the user must demonstrate that for all inputs, the expert system produces some
conclusion.  This is done by:

1. Constructing a logical formula that represents conditions under which the system is complete; this
logical formula will be called the completeness formula.

2. Showing that the truth value of that formula is TRUE.

If the expert system E is Cartesian, i.e,. it is required to produce values of more than one variable, then
the completeness formula for E is the AND of the completeness formulas for systems which set each of
the required output variables for E.

For a system E that is required to take one of some set of actions a pseudo-variable is created of which
values are the enumerated set of acceptable actions.  Then the completeness formula for E is the
completeness formula for a system that outputs the value of this variable.

The completeness formula for an expert system in E which sets a single variable v is constructed by an
iterative substitution process from an initial formula.  That initial formula is:

( v = e1) OR (v = e2 ) OR ... OR (v = en) (7.1)

where v = ei is an expression from a rule conclusion that sets v.

It is generally not possible to establish the truth of (7.1) directly.  However, the user can build a
formula that expresses the truth of (7.1) in terms of the input variables of the system.  To build this
formula, the user needs the following hypothesis function on atomic logical formulas in E:
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Let X be a formula of the form, 

VARIABLE = VALUE

If there is a rule in E containing X in its conclusion,

H(X) = OR( Hi(X) )

where Hi is the hypothesis (if part) of a rule in E which contains X in its then part.

Otherwise H(X) = X.

Using the function H, one can define a logical formula that expresses (7.1.) in terms of input variables:

Let F0 be a variable over logical formulas.

F0 = (8.1);

while

 ( F0 contains an atomic formula for which H(X) != X)

F = the result of substituting H(X) for X in f;

return F0;

The resulting logical formula, which will be called COMPLETENESS, expresses completeness in
terms of input variables to the expert system E.  E is complete if the truth value of this formula is
TRUE.  To prove that COMPLETENESS is TRUE:

1. Write COMPLETENESS in conjunctive normal form.

2. Eliminate OR’s containing logical opposites or all possible values of a variable.

If the resulting logical expression is TRUE, the system is complete.  If the resulting logical expression is
something else (call it COMPLETE0 for discussion purposes), then COMPLETE0 expresses the
conditions under which the system produces a conclusion.  Although not logically true, COMPLETE0
may be true because of mathematical theorems or domain knowledge.

Alternatively, NOT COMPLETE0 may be satisfiable.  In this case, the expert system E is not
complete.

Figure 7.1 below illustrates the above explanation of completeness.

Completeness of Investment Subsystem
To show the completeness of the investment subsystem (call it INV) of KB1, the first step is to
construct the formula (7.1) for INV:
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investment = stocks OR investment = "bank account" (7.1.a)
Expressing this in terms of input conditions gives

( "Risk tolerance" = high (7.1.b)
  AND "Discretionary income exists" = yes )
OR

 ( "Risk tolerance" = low
  OR "Discretionary income exists" = no)

Writing this in conjunctive normal form gives
( "Risk tolerance" = high (7.1.c)
  OR   "Risk tolerance" = low
  OR   "Discretionary income exists" = no )
AND
( "Discretionary income exists" = yes
  OR   "Risk tolerance" = low
  OR   "Discretionary income exists" = no )

The first term is TRUE because high and low are the only possible values for risk tolerance.  Likewise
the second term is TRUE because yes and no are the only possible values for discretionary income
exists.  Therefore, the formula expressing completeness of INV is TRUE, and INV is complete.

Figure 7.1:  Completeness of Investment Subsystem

Consistency

To verify consistency, the user must demonstrate that for all inputs, the expert system produces a
consistent set of conclusions, i.e., that for each set of possible inputs, all the conclusions of the expert
system can be true at the same time.  (As noted in an earlier chapter, determining which sets of possible
conclusions are consistent generally requires expert knowledge.)

To establish consistency, the user must do the following:

1. Construct a logical formula that represents conditions under which consistency fails; this logical
formula will be called the consistency formula.

2. Show that the truth value of that formula is FALSE.

For a system E that is required to take one of some set of actions, a pseudo-variable is created whose
values are the enumerated set of acceptable actions.  Then the consistency formula for E is the
consistency formula for a system that, perhaps among other things, outputs the value of this variable.

If there are no sets of inconsistent possible outputs, the system is consistent.  Some expert systems are
designed to recommend a set of components of a solution, and no one component contradicts any
other.  An investment advisor who recommended to each investor a set of desirable investments would
be an example of this.  For such systems, consistency is not an issue.
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Let I1,...,In be the sets of mutually inconsistent possible conclusions of E.  Each I consists of some set
of conclusions, e.g.,

Ii = {Ci1, ... , Ci(mi)} (7.2)

where the Cs are possible conclusions of E.

The consistency formula for E is:

F(I1) or F(I2) ... or F(In) = FALSE (7.3)

where

F(Ii) = Ci1 and ... and Ci(mi) (7.4)

It is generally not possible to establish the truth of (7.4) directly.  A formula can be built, however, that
expresses the truth of (7.4) in terms of the input variables of the system.  Just as for completeness, this
formula is constructed by substituting the OR of rule hypotheses that infer a conclusion for that
conclusion.  Substituting the hypothesis function (7.2) into (7.4) using the iterative algorithm (7.4)
constructs the consistency formula.

The resulting logical formula, which will be called CONSISTENCY, expresses consistency in terms of
input variables to the expert system E.  E is consistent if the truth value of this formula is TRUE.  To
prove that CONSISTENCY is TRUE:

1. Write CONSISTENCY in disjunctive normal form.

2. Eliminate ANDs containing logical opposites or other contradictory sets of conjuncts.

If the left hand side of the resulting logical expression is FALSE, the system is consistent.  If the
resulting logical expression is something else (call it CONSISTENT0 for discussion purposes); then
CONSISTENT0 expresses the conditions under which the system produces possibly contradictory
conclusions.  Although not logically false, CONSISTENT0 may be false because of mathematical
theorems or domain knowledge.

Alternatively, CONSISTENT0 may be satisfiable.  In this case, the expert system E is not consistent,
and is inconsistent for the inputs which satisfy CONSISTENT().

Consistency of Investment Subsystem:

To show the consistency of the investment subsystem (call it INV) of KB1, the first step is to construct
the formula (7.2.3) for INV.  The only set of inconsistent conclusions is:

{investment = stocks, investment = "bank account"} (7.2.a)
Therefore, (7.2.3) for INV is:

investment = stocks AND investment = "bank account" (7.2.b)
To show INV is consistent, one must show that (7.2.b) is FALSE.
Expressing this in terms of input conditions gives:
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( "Risk tolerance" = high (7.2.c)
  AND "Discretionary income exists" = yes )
AND

 ( "Risk tolerance" = low
  OR "Discretionary income exists" = no)
= FALSE

Writing this in disjunctive normal form gives:
( "Risk tolerance" = high (7.1.d)
  AND "Discretionary income exists" = yes )
  AND  "Risk tolerance" = low )
OR
( "Risk tolerance" = high
  AND "Discretionary income exists" = yes )
  AND "Discretionary income exists" = no   )
= FALSE

The first term is FALSE because high and low are contradictory values for risk tolerance.  Likewise the
second term is FALSE because yes and no are contradictory values for discretionary income exists.
Therefore, the left hand side of (7.1.d) is an OR of FALSE’s, and is FALSE.  This establishes the truth
of the consistency formula for INV, and therefore INV is consistent.

Figure 7.2:  Consistency of I Subsystem

Specification Satisfaction

While the vast range of possible specifications (as well as the Goedel Incompleteness Theorem makes it
impossible to give a general method for proving specifications, there are some particular kinds of
specifications where certain methods are useful.

Many valid specifications are not directly provable because they are not expressed in the variables and
propositions used for the knowledge base.  Before a specification can be proved it must be translated
into the variables and relations used in the knowledge base.  Translating specifications into the
language of a knowledge base requires expert knowledge.  Furthermore, this translation process may
expose conditions under which the specifications are violated.

Step 1:  Find all the possible conclusions that are constrained by the specification.

Step 2:  Show that each of these conclusions are only made when permitted by the specification; i.e.
for the specification S, and each conclusion C identified in Step 1,

If C then S(C) (7.5)

where S(C) is the result of substituting the variable values contained in C into S.

Let EC be the conditions under which the expert system E concludes C.  EC is computed by procedure
(7.5) above.  Suppose:



98

EC implies S(C) (7.6)

Then whenever C occurs, i.e., when EC is true, S(C) is also true.  On the other hand, if expert
knowledge causes one to question (8.6), there is reason to think that the expert system can conclude C
when S(C) is false.

Figure 7.3 shows a reasonable specification for Knowledge Base1.

A reasonable specification for KB1 is that it never recommend an unaffordable investment.
Step 1: The conclusion, investment = stock, is an investment that might not be affordable.
Step 2: Formulate how each conclusion is affected by the constraint, e.g.,

Expert system concludes "investment = stock" implies stock is affordable.
The successive substitutions of H(X) for X in this statement, using algorithm (7.4), produce a
succession of ever more detailed statements about when the specification is true.  For INV, these
statements are:

If "Risk tolerance" = high
AND "Discretionary income exists" = yes
the stocks are affordable.
If ("Do you buy lottery tickets" = yes (7.3.a)
  OR "Do you currently own stocks" = yes)
AND

("Do you own a boat" = yes (7.3.b)
  OR "Do you own a luxury car" = yes)
THEN the stocks are affordable.

The truth of these statements depends on expert knowledge.  If experts doubt any of them, it is
probably because the conditions found in KB1 under which it concludes investment = stocks, are not
sufficient to guarantee the specifications.  In fact, (7.3.a) seems plausible while (7.3.b) seems weak.
This indicates that the conditions for concluding the intermediate hypotheses,

If "Risk tolerance" = high
AND "Discretionary income exists" = yes

are not completely expressed in KB1.

Figure 7.3:  Example Specification for KB1

 Specification Based on Domain Subsets

Many specifications are of the form:

If the input is in some set S, (7.7)

then the output satisfies a logical formula P.

where S is defined by a logical formula C(I) over the input variables, and B(C1,...,Cn)) is a formula
built over the conclusions, Ci,  of the expert system; i.e. (7.7) becomes:
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If C(I) then B(C1,...,Cn) (7.8)

To prove specifications like (7.8), symbolic evaluation of the knowledge base is a useful technique; the
user can try to prove (7.8) by symbolic evaluation using either forward or backward chaining.  With
these proof methods, the user simulates the inference engine operating on inputs using the knowledge
base.  However, instead of actual input values, the only thing known about the inputs is that they satisfy
C(I).  This may be enough, however, to establish that the if a position of  some of the rules are
satisfied, then the conclusions will be derived within the said part of the rule.  If so, these conclusions
have been proved true on the basis of the assumptions, C(I).  Further reasoning may lead eventually to
showing that B is true.

Here is a forward chaining algorithm to prove B given C(I):

1. Assume C(I) = TRUE.  : (7.9)

2. If the truth value of B can be established using known information,

do so and goto X.

3. If the if part of a previously unsatisfied rule can be satisfied,

then set the then part of the rule to TRUE and goto 2

else quit, failing in the attempt to prove B.

4. If B is true,

then the specification has been proved

else if B is false

then the specification is not satisfied.

Here is the backward chaining algorithm:

1. CURRENT = if C(I) then B(C1,...,Cn). (7.10)

2. If the truth value of CURRENT can be established, do so and quit with the following result:

If CURRENT is true the specification has been proved,

but if CURRENT is false, the specification is not true.

3. If there is an atomic formula A for which H(A) != A (see 7.2)

substitute H(A) for A in CURRENT;

Goto 2.

4. Quit with failure to establish the specification.

Figure 7.4 shows the symbolic evaluation of  the KB1 example from chapter 5.
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To illustrate symbolic evaluation, the following specification will be verified on the original KB1 of
chapter 5:

If current savings < $3000, recommend that the investment is savings account. (7.4.a)

To prove the requirement, one assumes the condition:

"Savings balance" < $3000 (7.4.b)

and tries to prove that the expert system concludes that:

  investment = "bank account". (7.4.c)

The strategy for carrying out this proof is to use a modification of the expert system's inference engine.
It must be assumed that the inference engine makes inferences according to the rules of propositional
logic.  It is left to the scheduling strategy programmed into the inference engine to determine which of
all the possible inferences that could be made are in fact made.  For illustrative  purposes, a backward
chaining strategy is assumed.

Using a backward chaining strategy to prove that the expert system concludes 7.4.c, the user starts
with that conclusion and shows that it is satisfied.  The only way to do this in Knowledge Base 1B is to
satisfy the "if" part of Rule 2.  These conditions are true whenever

"Discretionary income exists" = no. (7.4.d)

Rule 6 makes this conclusion whenever:

"Savings balance" <= $3000. (7.4.e)

so (7.4.a) follows.

Notice that this proof mimics the inference engine of the expert system.  In fact, every step of the proof
could be carried out by the inference engine except for the last step of concluding (7.4.a).  However, a
modified inference engine could carry out that step if, whenever a truth value for an inequality was
needed, a knowledge base about inequalities was consulted.  In fact, such a knowledge base appears in
the appendix of this chapter, and contains a rule that says

If X<=C then X<C.

Using this rule, a modified inference engine that consults an knowledge base about when atomic
formulas are true is able to automatically prove the desired condition (7.4.a) about the knowledge
base.

Figure 7.4:  Symbolic Evaluation
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The main differences between actual and symbolic inference engines are:

• Actual inference engines collect actual values for variables and use them in evaluating the
conditions of rules to see if those rules fire.

• Symbolic inference engines have available logical conditions about the value of variables, e.g., the
hypotheses C(I).  Symbolic inference engines use this known information to infer whether atomic
formulas in rule hypotheses are true or false.  In an appendix to this chapter appear rules for
symbolically determining the value of some arithmetic atomic formulas.

To construct a symbolic inference engine from an actual inference engine, the function that determines
the truth of atomic formulas is replaced, but leaves the rest of the inference engine code intact.  The
actual inference engine determines the truth of atomic formulas by:

• Looking up the actual values of variables.
• Substituting them into the atomic formula.
• Determining the truth value of the result.

In a symbolic inference engine, the user can also evaluate atomic formulas when only conditions about
variable values are known, but the actual values are unknown.  The symbolic inference engine evaluates
atomic formulas by:

• Assuming the known conditions about the variables in the knowledge base.
• Using this information to establish the truth of the atomic formula.

To build a symbolic inference engine requires the user to replace the function for the actual evaluation
of atomic formulas with a function for symbolic evaluation, and to leave the rest of the inference alone.

Figure 7.5 list the steps involved for the actual inference engine.

Actual inference engine:  For KB1, suppose the user said that his or her savings balance was $2000.
Then the truth value of the atomic formula:

savings balance < $3000 (7.5.a)
can be determined by  substituting in $2000 for "savings balance" to produce:

$2000 < $3000  (7.5.b)
This inequality is seen to be TRUE.
Symbolic inference engine: Suppose that:

"savings balance" <= $2000 (7.5.c)
is known to a symbolic inference engine.  The symbolic inference engine tries to prove:

"savings balance" <= $2000 (7.5.d)
IMPLIES "savings balance" <= $3000

This formula is seen to be true.  In fact, using the following row of the table in the appendix for
evaluating atomic formulas,

ATOMIC FORMULA TRUTH CONDITION FALSE CONDITION
[a,b]=<c b<=c a>c

one may conclude (7.5.d).

Figure 7.5:  Symbolic Inference Engine
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Effect of the Inference Engine

The consistency and completeness techniques and the forward and backward symbolic inferences
engines presented so far in this chapter are based on the assumption that fairly standard inference
engines are used in processing the expert system knowledge base.  These standard algorithms are
capable of making all the inferences of propositional logic.  Inference engines can depart from these
algorithms by either error or design.  For example, an inference may stop inference after the first
knowledge base conclusion.

The most probable effect of departures in the inference algorithm from the standard is that the inference
algorithm makes fewer inferences than the standard algorithm.  An inference engine error of
commission, a false inference, is more likely to be found during testing of the inference engine, while an
omitted inference is harder to detect.

Consistency: Omitted inferences do not affect the above methods for finding consistency.  The
omissions merely mean that there are fewer conclusions to be inconsistent than expected.

Completeness:  Omitted inferences do affect completeness.  The omitted inferences may cause the
inference engine not to make an expected conclusion.  Where the inference engine is known to omit
some propositional logic inferences, it is suggested that completeness be verified using a symbolic
version of the same inference engine used on the knowledge base, incomplete though its inferences
may be.

Satisfaction Of Specification:  Specifications can be verified using symbolic versions of the same
inference engine used to run the knowledge base.  This provides the best insurance that the inference
engine will actually make inferences that correspond to those made during the proof of the specification
according to the rules of logic.

Inference Engines for Very High Reliability Applications

For applications where very high reliability is required, it is essential that the inference engine be known
to make correct inferences.  CLIPS (C Language Integrated Production Systems, first released by
NASA in 1988) is the only expert system shell claimed to have a  certified correct inference engine.

In order to know that an inference engine makes correct inferences, it is necessary that the inference
engine be proven correct.  One possible standard of correctness is that the  inference engine makes all
inferences possible with propositional logic given the information gathered from the user and other
sources.  This, or an alternative standard, should be proved by carrying out a formal correctness proof
on the source code of the inference engine, practical only for small, simple ones.

On the basis of this or other proven description of inference engine behavior, algorithms can be
constructed like those shown in this chapter for consistency, completeness, and symbolic evaluation for
specification satisfaction.
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In order to carry out in practice a correctness proof or equivalent description of the inference engine it
is necessary that both the source code of the inference engine be available and short and simple enough
to allow a proof to be carried out, given the primitive state of program correctness proofs.
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8. Validating Underlying Knowledge

If there are errors in the knowledge from which a knowledge base is built, there will usually be errors in
the performance of the expert system.  This chapter discusses methods for validating the knowledge
from which a knowledge base is built.

Introduction

If there are errors in the knowledge from which a knowledge base is built, there will usually be errors in
the performance of the expert system.  There are several ways that the KB can come to represent
incorrect knowledge:

• The expert(s) provide incomplete or incorrect knowledge.
• The knowledge engineer fails to correctly understand or code the expert's knowledge.
• Formalizations of knowledge, e.g. using the range of a variable to test for some underlying

condition, may fail to capture all instances of the underlying condition.

There are two kinds of validation that must occur on a knowledge base: logical and semantic.  Logical
validation checks how the rules and objects work together to reach logical conclusions.  In particular,
logical validation checks for consistency, i.e., that all the conclusions of the knowledge base can be true
at the same time.  Logical validation also checks for completeness, i.e., that the knowledge base
reaches a conclusion for all inputs.  While earlier chapters of the Handbook focused on logical
completeness and consistency, this chapter addresses semantic correctness and completeness.

Logical completeness and consistency are necessary for a knowledge base to be valid.  However,
logical completeness and consistency are not sufficient for knowledge base validity.  For example,
Knowledge Base 1 in the Introduction is logically complete and consistent; it contains no logical errors.
However, KB 1 makes investment decisions based only on risk tolerance and discretionary income.  It
uses no information about actual income, debt, fixed expenses, age and other important inputs to good
investment decisions.  In other words, while KB 1 is logically correct, it is seriously semantically
incomplete.  To be valid, a knowledge base must be semantically complete, i.e., it must base its
decisions on all information considered to be relevant by the expert.

An exception is that thorough testing (see Chapter 10, “Testing”) may show that some information can
be left out without affecting performance.  However, knowledge that the expert thinks is needed
should be included until testing shows that an expert system performs correctly without that
knowledge.

Similarly, a knowledge base can be logically consistent but not semantically consistent for its intended
application.  Semantic consistency occurs when all facts, rules, and conclusions of the knowledge base
are true for the application for which the expert system is intended.  To illustrate the difference between
logical and semantic consistency, consider ordinary Euclidean and spherical geometry.  Both are
logically consistent mathematical systems from which logically consistent expert systems can be built.
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However, for everyday life, Euclidean geometry is consistent and spherical geometry is inconsistent
with observed facts, while for long distance navigation, the reverse is true.

It is important to note, however, that a knowledge base that is logically inconsistent by definition gives
contradictory advice and is therefore semantically incorrect.  Likewise, a knowledge base that is
logically incomplete fails to provide a solution under some circumstances, and is semantically
incomplete.  Logical completeness and consistency are  prerequisites for semantic validation of a
knowledge base.

Validating Knowledge Models

Knowledge models are used as a major component of correctness proofs, but these proofs are
worthless if the underlying knowledge about the application domain is false in the domain.  Therefore,
it is important to validate the knowledge models with domain experts.

There are several ways to validate a knowledge model:

• Use a knowledge model from a standards document in the domain.  The standards process that
created the model can be assumed to have validated the knowledge in the standard.

• Create a knowledge model through the joint development and consensus of a team of recognized
experts in the domain.  For example, the knowledge base for Quick Medical Reference, an internal
medicine advisor, was created by a series of specialized consensus committees in very specialized
fields (e.g., Hepatitis B).  The knowledge model created in this way can be assumed to contain the
best available expertise, and the participation of multiple experts increases the chances that one of
them will catch any error that creeps into their discussions.

• Create a knowledge model with a single expert and review the knowledge model with other
experts.

When creating a knowledge model using a single expert where correct performance is critical, it is
important to validate this knowledge with outside experts not connected with development of the
model.  The following steps detail the validation process of the knowledge model:
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• Present the knowledge model to the outside experts.  In some situations it may be advisable to
have someone other than the domain expert, author of the knowledge model, do the presentation,
to ensure that professional courtesy does not interfere with critiquing the knowledge model.

• Collect all questions, comments, and objections to the knowledge models, or parts thereof.
• Sort and organize these comments into questions about parts of the knowledge model.
• Organize the questions into a cultural consensus test (see the following sections) to validate

individual items.
• Give the test to the outside expert, to determine the extent of agreement on each of the items.
• If some of the items are not validated, perform additional knowledge acquisition and modification

of the model to resolve the problems pointed to by the invalidated items.  This may include
additional discussions, bringing in more experts, literature searches, or redoing parts of the model.

Note that in validating the knowledge model, or in other knowledge validation activities, it is
important to ensure that the specialized expertise of experts used in validation cover the
intended domain of the expert system.  Most technical fields today are too big and complex to be
mastered in their entirety by a single expert, or even a few experts.  Therefore, in critical applications, it
is important to validate every part of the knowledge base with experts in that particular specialty.  An
example of this careful validation was the construction of the Quick Medical Reference expert system
for internal medicine, and its predecessor systems Internist and Cadeusius.  Although the final system
contained nearly a thousand diseases, groups of specialists in particular diseases (e.g. hepatitis B) were
brought in to collectively discuss and validate the knowledge base in their particular area of special
expertise.

After performing these validation steps it is important to assess the performance of the domain expert
(see the later section, Overall Agreement Among Experts).  If the current domain expert differs from a
consensus of other domain experts, then there are two possible courses of action:

• Replace the domain expert with one who represents a consensus of current domain knowledge.
• Continue the expert system with the disputed knowledge model, with the realization that the

system will not reflect a consensus of expert knowledge.  In this case it is unlikely that the system
will perform in a way that matches a consensus of domain experts.  Continuing development is a
legitimate course in experimental or non-critical systems but is not advisable in critical expert
systems.

An expert system containing knowledge which has not been validated should be used only for
applications where there is no serious consequence of an error by the expert system.

Validating the Semantic Consistency of Underlying Knowledge Items

Even if the expert knowledge has been properly encoded into an expert system knowledge base, the
KB will probably produce errors if the underlying expert knowledge is wrong.  Therefore, it is
important to validate the expert knowledge behind the knowledge base.  This is particularly important
because there are a number of ways in which errors can creep into the knowledge on which an expert
system is built.  Some of these errors are:
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• The expert is wrong or out of date; in fact, all experts are probably wrong or out of date on a few
points.

• The knowledge base was correct when written, but knowledge has changed.
• The knowledge engineer misunderstood the expert.
• Errors were introduced in maintenance.

When a given a fact that has been encoded into the knowledge base, how can one validate that this
represents correct expertise?  One approach is to do an experiment so that:

• One outcome is expected if the fact represents currently accepted expertise.
• Another outcome is expected if the fact does not represent currently accepted expertise.
• There is a statistical test that discriminates to an acceptable level of confidence between these two

cases.

The specialty of cultural consensus within anthropology provides techniques for validating knowledge
in a statistically rigorous manner.  These techniques can be applied to knowledge validation for
knowledge bases as explained below.

The basic method for validating a knowledge item is:

• Ask a panel of experts whether it is true or false.
• Tally the TRUE/FALSE answers.
• Analyze the results statistically.

Creating a TRUE/FALSE Test

In asking the experts to decide if the knowledge item is true or false, it is important not to bias them by
letting the expert know which answer agrees with the current assumption in the knowledge base.  Do
not, for example say, "You agree with this, don't you?".  To present the items for validation in a
context in which both TRUE and FALSE are a priori equally likely, disregarding the truth of the
item(s) being tested, do the following:

1. Start with a collection of TRUE/FALSE questions about half of which are true and half of which
are false, and which are about the domain of the knowledge base.  It is important that these
environment-creating questions are indistinguishable by the test taker from the questions that
actually test KB knowledge.

2. Scatter TRUE/FALSE questions that actually test KB items throughout the list of environment-
creating questions.

3. Adjust the test if necessary so that TRUE and FALSE have approximately equal probabilities of
being right.

Although this method is adequate for the purposes of this handbook, more detailed information about
constructing unbiased tests can be found in literature about survey and test design.
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Giving the Test

In applying the cultural consensus method to knowledge base validation, there are some issues that
must be handled carefully to get maximum information from the test.  First of all, the knowledge
engineer must realize and explain to the experts that it is not they but the knowledge base that is being
tested.  The items on the test represent assertions on which the knowledge base is based, and these are
being validated by experts.  The reason for using multiple experts is not a lack of confidence in any one
expert, but a desire to validate assumptions made in the knowledge base to a statistically significant
confidence level.  It is important to explain this to all the experts used in knowledge base validation to
ensure that no hostility toward the knowledge engineer or the project develops.  Such hostility that
would rob the project of valuable contributions to the knowledge base by the expert.

Secondly, the experts used for validation should be carefully instructed to call an item false if it is not
always true.  This is to guard against the very real possibility that some of the rules in the knowledge
base have entry conditions that are too broad.  The test can even be given in a form where there are
three answers to each question, TRUE, FALSE and SOMETIMES TRUE.  SOMETIMES TRUE and
FALSE can be combined as FALSE, i.e., the item was not considered true, when the test is scored.

Formulating the Experiment

Once the test for the knowledge base items has been written, an experiment must be constructed using
the test results to validate the items.  To do this, the test must be given to a group of experts to
evaluate and score the results.

The test must be given to enough experts so that the correctness of each knowledge item based on test
results can be distinguished from chance test results.  Following is a simple statistical method to
validate knowledge base items.

Analyzing the Test Results

A knowledge base item is statistically validated if:

• A majority of the experts answer that the KB item is true (or otherwise supply the test answer(s)
that one would predict under the assumption that the experts think the KB item is true).

• The majority is so overwhelming that if the experts did not think the KB item was true, the chance
of having results that at least this strongly suggest a belief in the KB item is less than some
preassigned threshold, traditionally 5 percent or 1 percent.

Table 8.1 shows the chance of finding unanimous agreement given the "null hypothesis," that the
experimental results are due to chance rather than belief in the KB item.

Table 8.1:  Confidence Level

NUMBER OF EXPERTS CONFIDENCE LEVEL

1 50%

2 75%
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3 87.5%
4 94.75%
5 96.88%
6 98.48%
7 99.22%
N 1 - 1 / 2**N

This means that it is probably a good idea to ask at least four experts to verify each important
assumption backing up the knowledge base.  When four or more experts agree unanimously, the
assumption is reasonably validated.  Six to seven experts agreeing provides a high level of confidence in
the assumption.

Table 8.2 shows the confidence levels results when one expert disagreeing with the rest of the group:

Table 8.2:  Confidence Levels with One Expert Disagreeing

NUMBER OF EXPERTS CONFIDENCE LEVEL
1 0%
2 25%
3 50%
4   68.75%
5 81.25%
6 89.06%
7 93.75%
8 96.48%
9 98.05%
10 98.93%
11 99.41%
12 99.68%

This means that when one expert out of eight disagrees the KB item is validated to a reasonable level
and is validated to a high level when one expert out of ten disagrees.

In general, if there are N experts of which M disagree, the confidence level achieved by this level
agreement is:

1 - (1 / 2**N) * SUM( m = 0 to M)combinations(M,N)

where combinations(M,N) is the number of combinations of M objects chosen from N.

This is computed by:

combinations(M,N) = M!*(N-M)!/N!
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where K! is the factorial of K.

Overall Agreement Among Experts

The above method of validation based on cultural consensus rests on an assumption that the experts
share the same basic knowledge, i.e., the same ideas about how to solve the problems covered in the
knowledge base, and are validating the specifics of that common approach, as expressed in the
knowledge base.  Sometimes, however, experts do not agree in their basic knowledge and approach to
a class of problems.  To detect whether all the experts take the same basic approach to problem
solving, observe the following:

1. Cluster the experts:  Represent each expert as the vector of answers on the TRUE/FALSE test.
Find a clustering of the experts based on these vectors.

2. Test for similarity:  Test to see if all the experts belong to the same cluster.

2a. Common cluster:  If all the experts belong to the same cluster, then the computation of item
confidence presented above remains valid.

2b. More than one cluster:  If there is more than one cluster among the experts, analysis of the
differences among experts must be conducted, as discussed below.  Then the cultural
consistency of individual KB items should be retested.

For the small number of experts that are involved in validating a knowledge base, clusters of experts
can be determined by hand inspection of the correlation matrix of test answer similarity of experts.

Approaches to Disagreement Among Experts

When experts do not agree, as evidenced by the existence of more than one cluster of experts, the
following approaches are useful:

1. Throw away outliers:  If it can be determined by interviewing other experts that an expert who is
not part of a larger cluster of experts represents a little-held school of thought within their specialty,
and if the more mainstream approach represented by the large cluster of experts successfully solves
the problems for which the expert system is intended, eliminate the outlier expert from the
validation sample of experts.

2. Choose a valid subset of experts:  If two clusters of experts work from totally different
assumptions, pick a cluster that achieves optimal results and use them both as the source of domain
expertise and experts for validation.  Do not try to include two conflicting schools of expertise in
the same knowledge base.

3. Use the separate approaches as subsystems:  If approaches represented by distinct clusters of
experts do better on different subsets of the target domain, it may be possible to build a system
where the differing approaches reside in separate expert subsystems.  These subsystems could
participate in a weighted vote to determine an overall conclusion, where the weight given to a vote
is the heuristically determined confidence factor that a particular subsystem can solve the problem
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under consideration.  Since this approach leads to a more complex, expensive system, it should
only be used when the separate approaches are not adequate by themselves.

4. Analyze disagreements:  Two or more clusters of experts may be a symptom of unresolved
controversies within the professional specialty supplying the expertise for the expert system.  In this
case, the expert system development team needs to decide if there is enough agreement among
experts to build an expert system that gives reliable advice in the domain for which it is intended.

Clues of Incompleteness

Clues that a knowledge base is semantically incomplete may exist within the knowledge base itself.
One is that the knowledge base is logically incomplete.  Another is that variables, statements,
conclusions, etc., are defined but not used.  This may indicate that an expert started to supply
knowledge that would use them, but never completed that part of the knowledge base.  Therefore, the
entire knowledge base should be checked for items that are defined but not used, and  each one of
these should be used or eliminated on expert advice.

Variable Completeness

Variable completeness is a special case of semantic completeness.  A knowledge base is variable
complete if it uses all of the important input variables in making its conclusions.  The steps in checking
variable completeness are:

1. Determine and codify what inputs the KB uses in determining each variable and the truth of
conclusions.

2. Ask experts to confirm the knowledge codified in Step 1.

There are two ways to determine and codify the variables used in making decisions:

• Computerized analysis of the knowledge base.
• Keeping careful knowledge acquisition and coding notes.

In either case, the goal is to be able to formulate questions of the form:

• The knowledge base currently uses variables V1,V2,V3...VN to decide X.
• Are there additional variables that should be in this list of inputs?  What are they?

• Are there input variables that are not needed?  If so, then what are they?

Once these questions have been defined they should be presented to experts, possibly first to the
experts used in building the expert system, and then to independent experts.  The process of asking
experts about input completeness should be continued until the variable set stabilizes.  Then the
variable sets should be validated using the technique described above for knowledge item validation.
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Semantic Rule Completeness and Consistency

Once the inputs to making decisions have been validated, the actual rules that make each decision
should be validated.  One problem in validating knowledge bases has been that the size of knowledge
bases and their relative lack of easily perceived structure makes them difficult for domain experts to
read.  To lessen this problem, the knowledge base can be partitioned into the pieces that determine the
value of each important variable and conclusion.  Each such piece represents the knowledge in the
knowledge base about a particular subtopic of the domain, and some conclusion drawn from that
subtopic.  The expert(s) is asked to examine each piece of the knowledge base separately, and answer
the following questions:

1. Is the information expressed in the rules that set the value of some particular variable or statement
correct?

2. Is the information complete? Or are there other conditions to consider,  either in individual rules or
as new rules?

By focusing the expert's attention on a single variable at a time and the conditions for setting that
variable, a large  knowledge base is broken down into pieces that are easier to comprehend.

A backwards chaining strategy can be used to go through the variables and  statements in an order that
is logical to an expert.  Start with the overall outcomes of the knowledge base, and for each pull out all
the rules that set that conclusion.  Validate these rules.  Then do the same for rules that set the
conditions in the "if"  parts of validated rules.  Continue the backward chaining validation process until
validated pieces cover the entire knowledge base.  The question, "Is this  knowledge base piece valid",
i.e., is the information correct and complete, can be considered a knowledge item, and validated to the
desired level of confidence using cultural consensus, as discussed above.  For knowledge bases where
reliability is critical, this piecewise validation should be carried out.

Validating Important Rules

Particular emphasis should be placed on validating rules that cover and appear to cover many inputs or
which process critical cases.  Rules that appear to cover many cases are those with few atomic
formulas in their "if" parts.  These rules should be pulled out and validated by experts.

To determine which rules typically handle common cases the knowledge engineer in charge of
validation should collect a set of typical input data from one or more experts.  Each data set is run on
the expert system, keeping track of which rules fired in processing this data.  Those rules are presented
to the experts for validation.

Exactly the same process is used to validate critical cases; data sets are gathered from experts, the data
sets run, and the firing rules validated by the experts.
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Validating Confidence Factors

Rule bases may contain assertions about the confidence of conclusions under various conditions, as
illustrated by this rule from PAMEX:

   if DS = 14
and NOT Deterioration Cause Indicator = Structural Failure

   and NOT Deterioration Cause Indicator = Weather Severity
   and Skid Number = Low
   and DV2 >= 15
   and DV15 < 30
   then conclude Aggregate Spray, confidence = 0.8
   and conclude Open Friction Course, confidence = 0.8.

A problem in validating the knowledge base is to insure that the confidence values are semantically
consistent.  In particular, if three rules with many "if" conditions in common have confidence values for
a conclusion of, for example, 0.9, 0.85 and 0.5, it is important to insure that the low confidence factor
is justified by domain knowledge.  Either through a coding error, or because different experts supplied
the confidence factors, it is possible that the large difference is an artifact of building the expert system.

The basic strategy for validating the confidence factors is:

• Predict the confidence factors for rule conclusions by estimating them heuristically from the
conclusion confidences of similar rules.

• Compare the predicted confidences to those actually written into the knowledge base.
• Validate the confidences where the predicted and actual differ by more than some threshold.

The first step in implementing this validation consists of rule simplification.  The following rule
simplifications should be carried out before predicting confidence factors:

• From a rule of the form "if A then B and C", form tow rules, "if A then B" and "if A then C", so
that the confidence factors of B and C will be validated separately.

• Normalize the relational operators by:
• Replacing all < and<= operators with > and >= operators.

• Replacing X>=Y with X>Y OR X=Y.

• Replacing X!=Y with NOT X=Y.

• Write the “if” parts of rules in disjunctive normal form, i.e., as an OR of ANDs of atomic formulas
and negations of atomic formulas.

• From a rule of the form "if A OR B then C" form two rules, "if A then C" and "if B then C", so that
the two conditions A and B can be validated separately.

The predicted confidence factors are based only on rules having the same conclusion, i.e., to validate
the confidence factor of B in "if A then B", it is only necessary to look at other rules with conclusion B.
Therefore, although the rule simplifications multiply the number of rules, partitioning by conclusion
breaks the rules into subsets of manageable size.
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Confidence factors are assigned to atomic formulas in rules in a two-step process.  The first step is to
assign confidence factors to the atomic formula itself.  The second step is to modify that confidence
factor if the atomic formula is the argument of a NOT.  If an explicit confidence factor appears with an
atomic formula, use that as the initial confidence factor for the formula in a rule.  Otherwise, if an
atomic formula appears in a rule, use 1 as the initial confidence factor.  If an atomic formula does not
appear in a rule, use 0.5 as its confidence factor.  Now, having defined confidence factors for the
atomic formulas themselves, modify them to account for NOT’s as follows:  if an atomic formula with
initial confidence C is an argument of NOT, its confidence is 1-C; otherwise, its confidence is C.

At this point, a confidence factor has been assigned to every atomic formula in every rule "if" part.
Given two rules, R1 and R2 for each atomic formula A, let A1, A2 denote the respective confidence
factors.  Then define:

distance(R1, R2) = sqrt(SUM(atomic formulas A)(A1-A2)**2)))

i.e., the square root of the sum of squares of difference between corresponding confidence factors.
Using this distance, an estimated confidence factor can be conducted by using a generalized regression
neural network (GRRN), which is described in the appendix to this chapter.

In interpreting the differences between actual and estimated confidence factors, it must be decided how
much difference should trigger validation.  Small differences of  0.1 and possibly 0.2 probably represent
expert judgments.  Larger differences may indicate errors in the knowledge base, but may also indicate
valid expertise.  Confidence factors with large differences between predicted and actual values should
be validated in a two-step process.  First validate the confidence factors with a single expert, e.g., the
project domain expert;  secondly, if doubt remains, validate the confidence factors with multiple experts
using cultural consensus.  Since differences may represent expert knowledge, if the expert validates a
confidence factor, it may be accepted as valid, or at least as valid as any other knowledge item supplied
by the expert.  Like other knowledge items, the single-expert-validated confidence factors may be
further validated by multiple experts.  However, most of these confidence factor differences reflect the
fine structure rather than the major assumptions of knowledge bases, and the priority of validating most
of them is small.  If the difference is large and the consequence of the difference is judged to be serious,
however, the confidence factor should be validated by multiple outside experts.

Given that resources are always limited, it is impossible in practice to validate all the items in a
knowledge base.  Given the need to triage testing, it is important to note during knowledge acquisition:

• which areas of the knowledge base are the most controversial among experts

• which experts disagree most with their colleagues.

In addition, to select priority items for testing, it is important to perform a hazard analysis of the system
containing the expert system. This analysis should extend into the expert system, and define which
assumptions in the knowledge base are safety critical.

Given both general areas of disagreement in the knowledge base, and priority areas for safety, the
knowledge engineer can set priorities for testing underlying assumptions.  It is very important to test



116

items that are both safety critical and prone to expert disagreement;  a system that reasons correctly
from false information is likely to fail.
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9. Testing

This chapter discusses how a simple experiment can be designed to test whether an expert system
satisfies a specification.

Simple Experiments for the Rate of Success

The most common statistic measuring how well a system satisfies a specification is to observe the
expected fraction of inputs on which the system will satisfy the specification.  One can estimate this
fraction of an experiment based on the following steps:

1. Select a data sample.

2. Run the expert system on the data sample.

3. Analyze the experimental data.

Selecting a Data Sample

Each specification for the expert system is of the form:

If the input satisfies certain conditions, then the output satisfies certain other conditions.

A sample of N data items for a specification is a set of N data items that satisfies the conditions in the if
part of the specification.  Furthermore, the sample should satisfy the following additional condition:

If x is a variable which is thought to affect the reliability of the expert system on the specification,
the distribution of x in the sample should approximate the distribution of x in the underlying
population.

There are several ways to collect a sample:

random subsample: If a sample of data was put aside for testing during the initial phase of the system
lifecycle, the experimenter can draw a random subsample from this sample.

monitoring: Potential inputs can be collected from the environment where the expert system is to
perform.  A subset of the observed inputs that satisfy the conditions of the specification to be tested
becomes the sample for the experiment.

generated input data: Where actual data is not available or practical, a computer program can be
used to randomly generate data satisfying the input conditions of the specification.

The size of the sample that should be selected is estimated below.
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If a specification has been proved to be satisfied, the existence of the proof may increase the reliability
achieved by a test.  This effect is also discussed below.

Estimating a Proportion (Fraction) of a Population

If the expert system is run on N data items, and it satisfies the specification on K of those items, then:

K/N =  the experimental point (i.e., single number) estimate of the proportion of the underlying
population satisfying the specification

If the sample size N is sufficiently large, the distribution of sample proportions (the values of K/N) is
approximately normal.  This occurs when both the following conditions are true:

K = N*(K/N) > 5 (9.1)

N*(1-K/N) > 5

When this is true, the standard error of the proportion is

s_e(K/N) = sqrt( (K/N)*(1-K/N)/N ) (9.2)

When the conditions (9.1) for normality are not satisfied, the Poisson distribution, discussed below can
be used to estimate the satisfaction of a specification.

The Confidence Interval of a Proportion

In this section the goal is to find an interval of proportions (fractions) of a population since most of the
time the observed satisfaction of the specification for a new sample will be in the interval.  In particular,
the goal is to find an interval such that the probability of the observed satisfaction being in the interval is
(sat) for (sat) close to 1.

The steps in computing the interval are:

1. Conduct the experiment to test the specification.  Observe:

• The sample size N.

• The number of times K the specification was satisfied on the sample.

• Conduct enough trials so that the requirements for approximate normality are satisfied.

2. Compute s_e(K/N)

3. From a statistical table, find the standard normal deviate (snd)  of sat, often called the "z-score" and
denoted by z.

The standard normal deviate is a multiple of the standard error marking out a central region of the
normal distribution that contains a given fraction of the total area (which is 1) under the normal



119

distribution.  In particular, z(sat) is the number such that the area under the normal distribution between
-z(sat) and z(sat) is sat, i.e.,

z(sat)

   |

INTEGRAL| normal(x)dx (9.3)

   |

-z(sat)

where normal(x) is the standard normal distribution,

n(x) = (1/2*pi)* exp(-x^2/2) (9.4)

While there is no closed form for z, tables of z-scores are widely available in statistics texts; typical
values are shown below:

sat z(sat)
50% 0.68
75% 1.15
90% 1.65
95% 1.96
98% 2.33
99% 2.58
99.5% 2.81
99.8% 3.08

When K successes are observed in N trials, the sat confidence interval is

K/N  +/- z(sat)*s_e(K/N) (9.5)

Choosing Sample Size

The goal for a system developer is often to show that a system will perform at least as reliably as some
threshold.  Statistically, this means that with a confidence of at least C, a specification is satisfied in at
least fraction F of a sample on which the specification applies.  A typical statement of this form is:

The expert system correctly diagnoses pavement maintenance remedies at least 90 percent of the
time with 95 percent confidence.

This means that if another experiment using the same sample size was conducted, at least 95 percent of
the time the measured fraction on which the specification is satisfied would be at least 90 percent.
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Given a desired fraction F and a confidence level C, the user can obtain the size of sample needed to
achieve these parameters in the following way:

1. Conduct a small initial experiment to estimate the fraction on which the specification is satisfied.
This initial estimate will be denoted F0.  If F0<F and the sample size of the initial experiment
guarantees that there is reasonable confidence in F0, the expert system does not satisfy the
proportion F.  If F0 is equal or only slightly larger than F, the size of the experiment needed to
narrow the confidence interval around F0 to exclude F will be unreasonably large; in practice, it
will be impossible to statistically validate the satisfaction with proportion F and confidence C.

2. Given that F0 >F, compute:

s_e = (F0-F)/z(C) (9.6)

To achieve F and C, choose a sample size such that the standard error is less than or equal to s_e.  This
means choosing an N such that:

sqrt( F0*(1-F0) / N ) =< s_e (9.7)

or

N >= F0*(1-F0)/s_e^2 (9.8)

For example, if:

preliminary experimental proportion (F0) = 93%

minimum acceptable proportion (F) = 90%

confidence interval = 95%

then

s_e = (93%-90%)/z(95%) = 0.03/1.96 = 0.153

and

N >= 93% * (1-93%) / 0.153^2 = 277.9

This estimate of sample size is approximate, because the preliminary proportion F0 used in the
computation is only the result of a small preliminary experiment, and will contain some random error.
Therefore, the experimenter should, if possible, design an experiment so that an initial experiment can
be continued by testing more data.  This is possible provided that the probability of drawing any data
item in the continuation of the experiment is the same as drawing that data item in the initial
experiment.
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Estimating Very Reliable Systems

For systems that do not fail often it is difficult in practice to observe the five or more failures that
causes the proportion to be approximately normally distributed.  In this case the Poisson distribution
should be used as follows to estimate a confidence interval for the satisfaction proportion.

The Poisson distribution describes the number of occurrences of some random event in given interval
of time or region of space.  For example, the number of fish over any square meter of a lake, where the
lake bottom is uniformly attractive to fish, is approximately Poisson distributed.

The formal requirements for an occurrence to be Poisson distributed include:

• Each occurrence is independent of the others.
• Each interval can potentially contain an infinite number of occurrences.

In practice, the second requirement can be approximated if a large number of occurrences can occur in
a region; what is "large" for this purpose will be estimated below.

If the average number of occurrences in a region is L, the probability of finding k occurrences is:

P(k) = exp(-L)*L^k/k! (9.9)

The probability of K or more occurrences is:

SUM exp(-L)*L^k/k! (9.10)

k>=K

a series that converges geometrically once L/k < 1.

For testing a specification, a region is defined to consist of N trials, where N is a number such that N or
more occurrences is very unlikely, as computed by (9.10).

The requirement that a specification is satisfied at a proportion at least F, means that

(N-Fail)/N > F (9.11)

where N is the number of trials in a region, and Fail is the number of failures observed in N trials.  This
means that the number of failures Fail should satisfy is:

Fail < (1-F)* N (9.12)

This says that the number of failures should be less than the acceptable failure rate, 1-F, times the
number of trials in a region.  Using (9) the user can compute the probabilities of observing failure rates
satisfying (9.12).  Denote the sum of these probabilities by

P = SUM P(k) (9.13)
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k < (1-F)*N

Then if P >= F, the expected success rate is at least F.

How a Proof Increases Reliability
Suppose that in a Hoffman region a specification has been proved and verified in a single experimental
trial.

The question to be asked then is:

What is the probability that the specification would fail on a new trial with inputs in the Hoffman
region ?

By the definition of a Hoffman region, all atomic formulas that determine the computational path of the
system have the same truth values for the inputs of the second trial.  Therefore, the output on the new
trial should be identical to that of the first on which the specification was satisfied.  The only way for
the outcome of the second trial to be different is for a system error to have occurred.  Therefore, the
probability of a failure on a Hoffman region for which both a proof and a single trial experimental
verification is available is the probability of an underlying computer hardware or system software error
occurring during the computation.  As the Pentium bug illustrates this is a small, but non-zero
probability.

In order for a fielded system to perform reliably, the probability of a computer system error must be
kept small.  However computer system error probability applies approximately equally to all
knowledge bases.  Therefore, once the underlying reliability of the computer system is established,
resources should not be expended testing for this error.  In particular, where a proof exists, one
experimental trial per Hoffman region is sufficient to verify a specification with probability 1-Fc, where
Fc is the probability of a computer system error.
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10. Field Evaluation, Distribution and Maintenance

Evaluation, which includes field testing, addresses the issue "is the system valuable?"  Value is indicated
by the degree of end user approval, which in turn determines the extent of acceptance and use of the
expert system.  Distribution and maintenance of expert systems are addressed in this chapter.

Field Evaluation

Evaluation is the process of determining the likelihood that once deployed, the expert system will be
used whenever appropriate.  Evaluation should be an ongoing endeavor to help ensure maximum usage
of the deployed system.  Pertinent issues in evaluation are:

• Is the system user friendly and do the users accept the system?

• Does the system give "correct" results and is the logic of the system correct?

• Does the expert system offer an improvement over the practices it is intended to supplement?

• Is the system easy to learn and to become proficient on?

• Is the system useful as a training tool?

• Is the system in fact maintainable by other than the developers?

• Can the system be used in the intended work environment?

There are no universally accepted standards for the evaluation of expert systems.  In fact it may be
quite difficult to achieve.  Sometimes evaluation is ignored until very late in system development.
However, there are some things which can be done to make the process more effective.  First, for
systems under development, the developer should design for testing.  For completed prototypes this is
impossible, however workshops and substantial interaction with the target end users can make the
process of field testing much more valuable.  It is critical that the end users be kept aware of how
important their contributions are and that their efforts are greatly appreciated.
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Workshops and follow-up efforts with end users and experts can provide valuable
improvements to an expert system and incentives for its use.  After the expanded prototype has
been constructed based on knowledge from the experts and end users on the development
team, a workshop or series of workshops involving a larger community of experts and end
users will usually result in major improvements to the system.  The participants should be
introduced to the computer program (expert system) and to the general concepts used in the
development of the system.  During the workshops the knowledge structure and the
parameters used in the decision making process and their interrelationships should be reviewed.
Expected benefits from workshops include:

• A verification check, i. e. review and improvement of the logic used in developing the
system rules

• Enhancement of the knowledge base, i. e. finding oversights in the rules and the
relationships between them

• More user oriented and user friendly interface

• Development of vested interest in the user community, i. e. establishment of a cadre of field
users who want the system to succeed

• A better and more useable system

As part of the evaluation process, the assumptions made during planning of the system should
be reexamined.  For example during the planning process assumptions on the frequency of use,
availability of input data, usefulness of system output, ease of use, etc. should have been
documented.  These assumptions should all be tested during field trials.

While there may be no universally accepted standards for field evaluation of expert systems,
steps similar to those prescribed in Chapter 9, Testing, can improve the process.  The big
difference between testing and evaluation is that testing focuses on the accuracy of the advice
given by the system while evaluation focuses on the degree of user acceptance of the system.
The steps suggested for evaluation are as follows:

1. Select evaluation criteria and determine the minimum acceptable performance level for
each criterion selected.  Ideally these can be found in the requirements document for the
expert system.  If this information is missing (which is frequently the case) proposed criteria
should be provided to the developers and the users of the system.  For example:

• a minium of 90% of the users surveyed will agree that the consistency of answers the
system provides offers a marked improvement over past practice and that the quality
of answers provided is acceptable.

• a minimum of 80% of users surveyed will rate the ease of learning and the user
friendliness of the system as acceptable or highly acceptable.
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• a minimum of 80% of users surveyed will rate the appropriateness of and ease of
answering system queries as acceptable or highly acceptable.

A simple to use evaluation form should be prepared depicting these criteria.

2. Specify how each criterion will be measured.  For example each of the criteria may be
accessed by the users on the following three point scale:

• highly acceptable

• acceptable

• unacceptable

3. Select a sample of users.  Ideally a minimum of 12 users should be selected from the
population of users.  The greater the number of end users in the study and the more
representative they are of the target end user community, the more the results can be
viewed with confidence.

4. Gather data.  Have each user to use the expert system on a minimum of six cases.  After
each case, have the user fill out the evaluation form, rating each criterion on the three point
scale.  Present the six cases to the users in random order.  Debrief each user by asking for
details on the basis of the rating given.

5. Analyze the data.  Summarize all of the ratings of each user on each criterion and across all
users for each criterion.  Determine if the target level of acceptability has been reached or
exceeded for each criterion.  The data can then be analyzed.

6. Report the results and recommendations.  Report on the strengths and weaknesses of the
expert system.  Concentrate on suggestions for improving the likelihood of user acceptance
by emphasizing features which receive low ratings from the most users and those that could
be the most quickly and economically improved.

The personnel who distribute the system and provide field support for the field evaluation must
be carefully screened and selected.  The wrong selection of support personnel can sabotage
even the very best of expert systems.  The field support personnel must have the following
capabilities:

• Expert knowledge of the domain of the expert system.  During this phase the field support
staff may be called upon to not only provide support for the expert system that is
dependent on domain knowledge, but to answer domain specific questions from the end
users.  A non domain expert can do irreparable damage to the credibility of the system
during this phase.
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• Sophisticated computer skills.  The field support personnel have to go into a strange
environment and correctly and efficiently install an expert system and then provide training
using this unfamiliar equipment.  Installation problems can always be expected.

• Excellent language skills in the language of the domain experts and end users.  The field
support personnel must be able to express concepts clearly and concisely to the users at
their duty station and in their language and to understand the nuances that the end users try
to convey.  Anything less than FLUENCY in the language of the end users is not
acceptable.  In addition to language skills the field support personnel must have excellent
interpersonal skills.

Some of the activities to be conducted in field testing are:

• Field operating environment - It is necessary to become acquainted with the field operating
environment the expert system will be installed in.  Even though operating environment
was considered through the domain experts and end users, it will in fact appear different to
every observer and there will be factors that effect operation that were not considered
before the actual installation and field trials begin.

• Installation of expert systems - The expert system will have to be installed on the
equipment provided by the end user/tester.  This step will usually not be routine as
computers or operating systems, etc., may have to be reconfigured to accommodate the
expert system.

• Additional training for the end user/tester will need to be provided.  Regardless of prior
training, the end user/tester will need support to overcome the various nuances that appear
during field test conditions.  At this point it is also necessary to define the roles of various
parties who participate in the field testing.  Who runs the expert system?  Who approves
the use of expert system recommendations?  Who applies the recommendations from the
expert system?  Who actually collects field data?  Who does the preliminary
screening/preparation of any data collected?

• After the expert system is installed on the end users computer the requirements and terms
for the field tests must be reviewed.  Competing demands on the end user are always more
extensive at the end users duty station than they were during previous meetings.  It is
critical to get a renewed commitment.  The commitment to support the end user/tester in
every way possible must also be reaffirmed.  The end user must understand how critical
his/her support is and that the sponsor values this.

• Specific test cases should be identified and discussed.  This includes previously identified
sample test cases and new conditions that may be encountered in the field.

 

• The formal mechanism for incorporating findings from the field tests should be developed
and reviewed in detail with the end user/tester.  Also the formal mechanism for sharing
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information between end users/testers must be developed and discussed with all end
users/testers.

A final evaluation of end user satisfaction should take place after testing has demonstrated that
the expert system has reached its target scope of coverage and level of accuracy.

Distributing and Maintaining Expert Systems

Once the expert system development effort has been completed, the tasks of distribution and
maintenance begin.  Although there are no fixed rules governing these tasks, there are some
general guidelines which can make these tasks easier to perform.

Distribution

There are three major criteria that a developer should follow in order to facilitate the
distribution of a given expert system.

1. Identify and involve the user community before starting the development of an expert
system.  This should insure that the expert system actually solves a real set of problems.
Also it will give the user community a vested interest in the testing and application of the
system.

2. Develop the system using standard hardware and software.  Although there are a number
of exotic pieces of expert systems hardware and software, the cost of these items is often
high and the uncertainty of survival of these products in the market place makes it
unreasonable to expect potential users to procure them just to use an expert system.

3. Use development software that does not require distribution licenses or where an unlimited
distribution license can be purchased for a reasonable fee.  The time and funding expended
on paying fees for each system distributed, as required for many available development
tools, can become an unwanted administrative and financial burden.

Maintenance

The task of system maintenance is one that should be planned for from the inception of the
expert system development project.  Maintenance can be facilitated by following a few good
development rules. These include:

1. Design the expert system to be as transparent as possible.  Since the system maintenance
will probably not be conducted by system designers, it is necessary that the structure of the
expert system be as straightforward and clear as possible.

2. The developers should use logical and understandable names for objects and knowledge
structures within the system and avoid the use of cryptic names and obscure abbreviations.

3. The developers should also avoid the use of overly complex and obscure software
structures, even though their use may provide some type of performance benefits.
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4. Simplicity should be one of the guiding principals in the development effort.

The system must be well documented.  The documentation should be produced as the system
is developed, not as an after thought after the system is finished.  The knowledge engineer
should:

• Identify where the system's knowledge resides (e.g., in the knowledge base in the form of
facts and rules and in the inference engine in the form of heuristic search techniques).

• Document the inference procedures that the system uses in producing solutions.

• Ensure that as part of the documentation an explicit model of the problem solver is
included

• Ensure that the documentation also provides a comprehensive and well documented test
procedure for the system

The expert system itself should contain an extensive set of both user "help" text and
explanation text which explains how the system produced a given solution.

The documentation and the help and explanation text should be produced during the
development phase and not added after the system has been built.  One of the guiding
principles that developers should use is "a poorly documented system will have a short useful
life."

Each version of a given expert system should have a version number.  This will make it easier
to provide users with up-dated copies of the system.

Establish a mechanism for soliciting, receiving and acting upon feedback from the user
community.  This will facilitate the identification and removal of "bugs" in the system and will
also make it easier to retrofit the system to satisfy specific user community needs after the
system has been distributed to the user community.
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Appendices

1.  Symbolic Evaluation of Atomic Formulas

A common type of atomic formula in a rule-based expert system is of the form:

<VARIABLE> <RELATION> <CONSTANT> (A.2.1)

where <RELATION> is one of the relations, =, <, >, <=, or >=.

The following table shows when an atomic formula of this form is true or false given conditions
on <VARIABLE> of same form, A.2.1.

In this table, "TRUTH CONDITION" specifies conditions under which the atomic formula is
true for all numbers in the interval.  "FALSE CONDITION" specifies conditions under which
the atomic formulas are false for all numbers in the interval.  The following restrictions on the
variables a, b and c apply:

a is in [-INFINITY,INFINITY)
b is in (-INFINITY,INFINITY]
c is in (-INFINITY,INFINITY)

ATOMIC FORMULA TRUTH CONDITION FALSE CONDITION
(a,b)<c b<=c a>=c
[a,b)<c b<=c a>c
(a,b]<c b<c a>=c
[a,b]<c b<c a>=c

(a,b)=<c b<=c a>=c
[a,b)=<c b<=c a>c
(a,b]=<c b<=c a>=c
[a,b]=<c b<=c a>c

[a,b]=c a=b=c a != b or a != c or b != c

(a,b)>c a>=c b<=c
(a,b]>c a>=c b<c
[a,b)>c a>c b<=c
[a,b]>c a>c b<c

(a,b)=>c a>=c b<=c
[a,b)=>c a>=c b<=c
(a,b]=>c a>=c b<c
[a,b]=>c a>=c b<c
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2.  General Regression Neural Nets

A general regression neural net (GRNN) is a method for estimating a function from a set of its
values at particular points in its domain.  Although the GRNN algorithm can be put in the form
of a neural net, it is best understood as an interpolation.  In particular, GRNN interpolates from
known data points by computing a weighted average of nearby points.  The weights in this
average decay exponentially with distance from the point where the function is being estimated.

Notation

The following notation will be used:

• Uppercase letters (e.g., P, X, X2 etc) denote points in the input space.
• Lowercase letters with subscripts represent numbers for different fields (axes) for the point

named by the corresponding uppercase letter.  The subscripts identify which axis the
number represents.  Axis subscripts follow any subscripts that are part of the name of the
point.  Examples: p2, xi, x2i.

Prerequisites for GRNN

To carry out a GRNN computation, it is necessary that a distance function be defined between
any two points in the input domain.  The Euclidean distance function works well for GRNNs,
although any distance function can be used.  The Euclidean distance is defined by:

d(P1, P2) = sqrt( SUM( over fields i)(p1i - p2i)**2)))

A weight function from pairs of points to real numbers is defined as follows:

w(P1,P2) = exp(-K*d(P1,P2))

In other words, the weight assigned to P2 for a GRNN estimate at P1 decays exponentially
with the distance from P1 to P2.  K is parameter that determines how fast the decay occurs.

The GRNN Interpolation

Following is the GRNN interpolation of a function fn:

grnn(P1) = SUM(all points P2 in data set)w(P1,P2)*fn(P2))

This says that the GRNN estimate of fn at a point is the weighted average of the known
function values, where the weights decay exponentially with distance from the point where the
estimate is being made.

3. Verification and Validation: Past Practices

Significants numbers of articles on verification and validation of knowledge-based systems first
appeared in the literature in the early 1980’s.  Many authors who have written about or
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attempted the verification and/or validation of knowledge-base systems have their own
definition of the concepts.  The method that they use or the system that they design to
accomplish the task(s) is usually a reflection of that particular definition.  A few authors have
asserted that verification and validation are the same.

The following tables summarize past work in verification and validation.  Complete references
appear in the bibliography.

VALIDATION METHODS THAT HAVE BEEN USED:

Table A.3-1:  Validation Methods
         METHOD EXPERT SYSTEM   REFERENCE
Turing  Test  Variation Mycin

KBSCD
Yu, et al., 1979
Agarwal, Kannan,Tanniru,1993

Simple Comparison with
     Expert

Diabetes Mellitus
Tegument
Hemody. Monitoring

Lehmann, et. al., 1993
Potter & Ronan, 1987
Koski, et. al., 1991/92

Comparison w/Expert Using
   Sensitivity Analysis

ESPE (Tool Set)
Prospector

Franklin, et. al., 1988
Gaschnig, 1979

Comparison w/Expert Using
  Freq. Anal. & Distance
Anal.

PNEUMON - IA Verdaguer, et. al., 1992

VERIFICATION METHODS THAT HAVE BEEN USED:

Table A.3-2:  Verification Methods
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METHOD TOOL
(If Exists)

  REFERENCE

Tables & Pairwise Rule
Comparisons

Rule-
Checker
Check

Suwa, Scott, Shortliffe, 1982
Nguyen, et al.,1987

Decision Tables of  ‘Contexts’ ESC
GRAFCET

Cragun & Steudel, 1987
Renard, Sterling, Brosilow,
1993

Meta-Knowledge EVA
Valid

Stachowitz, Combs, 1987
Laurent (ESPIRIT-II)

Analytical Hierarchy Process Bahill, Jafar, Moller, 1987
Graphs:
Constraint Connection
Flowgraph
Parameter Dependency  Network

Freeman, 1985
Fenton, Kaposi, 1987
Agarwal, Tanniru, 1992

Petri - Nets Agarwal & Tanniru, 1992
Liu & Dillon, 1991

Partitioning:
Graph-Based
Clustering
Clustering Algorithm
Category Partition Method Testing

Jacob & Froscher, 1986
Cheng & Fu, 1985
Jacob & Froscher, 1990
Amla & Ammann, 1992

Incidence Matrix Technique IMVER Coenen, Bench-Capon, Kent,
1994

Ripple-Down Rules Kang, Gambetta, Compton,
1994

DOMAIN - INDEPENDENT  SOFTWARE TOOLS  USED FOR V. & V.:
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Table A.3-3:  V&V Software
TOOL PURPOSE METHOD USED REFERENCE
RITCaG Validation Test Case Generator Gupta, Biegel, 1990
un-named Validation Runs Test Cases Kang & Bahill, 1990
ESPE Validation Sensitivity Analysis Franklin, et al., 1988
Check Verification Tables Nguyen et al., 1987
ESC Verification Decision Tables Cragun, Steudel, 1987
GRAFCET Verification Graphical Design

Lang./Dec. Tables
Renard, Sterling, Brosilow,
1993

un-named Verification Decision Tables Vanthienen,Dries, 1993
EVA Verification Meta-language Stachowitz,Combs,1987
Valid Verification Meta-language Jean-Pierre Laurent

(ESPIRIT-II project) - Europe
BEACON Verification Graphs Freeman, 1985
un-named Verification Layered Support Graphs Valiente, 1992
VALIDATOR Ver. & Valid. Syntax & Semantics

Checks
Jafar & Bahill

COVER Verification First-Order Logic Preece, et al. 1992
Expert Choice Verification Analytical-Hierarchy

Process
Bahill,Jafar, Moller, 1987

Spot Verification Prolog Rule Base Lane, 1989
KB-Reducer Verification KB reduction Ginsberg, 1988
IMVER Verification Incidence matrices Coenen, Bench-Capon, Kent,

1994
un-named Verification Clustering Algorithm Jabob & Froscher, 1990
in-progress Ver. & Valid. Meta-language, GUI,

Visual Guide to Rule in
Flow-Graphs

Traylor, Schwuttke, Quan,
1994
(JPL-NASA)

4. Knowledge Base 1 Illustrations
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ILLUSTRATIONS OF KNOWLEDGE BASE 1

The knowledge base 1 (KB1) has six rules.  There are seven variables which can take two
possible values.  It is, therefore, a seven dimensional, binary problem.  Let’s focus on rule 3 to
understand the illustrations of KB1.  It has two hypotheses, and one conclusion.  The
hypotheses are “Do you buy lottery tickets?”=“yes”, and “Do you currently own stock?”=“yes”.
They are associated with the logical operator “or”.  The consequent is “Risk Tolerance”=“low”.

For the two variables of the hypotheses in rule 3, there are two possible values:  “yes” or “no”.
The number of possible combinations of values for the variables is four.  These four
combinations appear in figure 1 as four square regions defined by the closed boundary (defining
the domain of the variables) and the line boundaries separating the possible values for each
variable.  Each square is a Hoffman region.

If variable “Do you buy lottery tickets? “ is assigned a value “yes”, then two of the four regions
are relevant.  In figure 1, they are shown with a hatch.  The two regions corresponding to
hypothesis “Do you currently own stock?”=“yes” are hatched in figure 2.

DO YOU CURRENTLY

OWN STOCK?

DO YOU BUY LOTTERY
TICKETS?

DO YOU BUY LOTTERY TICKETS?=YES

Figure 1

YES

NO YES

NO

DO YOU CURRENTLY

OWN STOCK?

DO YOU BUY LOTTERY
TICKETS?

DO YOU CURRENTLY OWN STOCKS?=YES

Figure 2

YES

NO YES

NO

DO YOU CURRENTLY

OWN STOCK?

DO YOU BUY LOTTERY
TICKETS?

DO YOU BUY LOTTERY TICKETS?=YES

                                  AND

DO YOU CURRENTLY OWN STOCKS?=YES

Figure 3

YES

NO YES

NO

DO YOU CURRENTLY

OWN STOCK?

DO YOU BUY LOTTERY TICKETS?=YES

                                  OR

DO YOU CURRENTLY OWN STOCKS?=YES

DO YOU BUY LOTTERY
TICKETS?

Figure 4

YES

NO YES

NO



135

In two dimensions, a Hoffman region is a surface as shown in this example.  In three
dimensions, it would be a volume, ect...

The logical operators are “and”, “or”, and “not”.  The last one is obvious in the case of a binary
system:  “not””yes”=“no”.  In figure 1 and 2, the Hoffman regions corresponding to each
hypothesis of rule 3 are hatched.  When combined with an “and” logical operator, the
intersection of the two  sets of Hoffman regions that logical expression.  It is shown in figure 3.
The intersection in this case is a unique Hoffman region.

In rule 3, an “or” logical operator connects the two hypotheses.  In this case, the union of the
two sets of Hoffman regions is taken , as shown in figure 4.

Next, the region defined by the logical expression of hypotheses is labeled with its rule number.
For rule 3, the three Hoffman regions are labeled with a circled 3, as shown in figure 5.  The
consequent for the rule is linked to the label of the region of hypotheses.   In figure 6, a curved
arrow starts at the circled 3, and ends at the value “low” of the variable “Risk Tolerance”.

DO YOU CURRENTLY

OWN STOCK?
DO YOU BUY LOTTERY
TICKETS?

RULE 3
DO YOU BUY LOTTERY TICKETS?=YES

OR
DO YOU CURRENTLY OWN STOCKS?=YES

Figure 5

NO

YES
NO

YES

3

THEN
RISK TOLERANCE=LOW

DO YOU BUY LOTTERY
TICKETS?

RULE 3
DO YOU BUY LOTTERY TICKETS?=YES

OR
DO YOU CURRENTLY OWN STOCKS?=YES

DO YOU CURRENTLY

OWN STOCK?

Figure 6

NO

YES
NO

YES

3

RISK
TOLERANCE?

LOW
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RULE 3 AND 4:
DO YOU BUY LOTTERY TICKETS?=NO

AND
DO YOU CURRENTLY OWN STOCKS?=NO

DO YOU BUY LOTTERY
TICKETS?

THEN
RISK TOLERANCE=LOW

DO YOU CURRENTLY

OWN STOCK?

Figure 7

YES

RISK
TOLERANCE? HIGH

NO
YES

 
4

NO

At this point, each rule can be represented using this scheme.  Rule 4 has the same variables in its
hypotheses and conclusions.  Figure 7 shows the graphical representation of rule 4, and figure 8
shows rules 3 and 4 together.

All six rules are shown in figure 9.  Note that three clusters of rules become apparent:  {R3, R4}
in the upper left corner, {R5, R6} in the upper right corner, and {R1, R2} in the lower center of
the figure..

RULE 3 AND 4:
OVERLAP

DO YOU URRENTLY

OWN STOCK?

DO YOU BUY LOTTERY
TICKETS?

Figure 8
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INCOME EXISTS?

Figure 9
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STOCKSBANK
ACCOUNTS
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LOTTERY TICKETS? YES

NO
YES

NO

4 3 

DO YOU CURRENTLY
OWN STOCKS?

RISK
TOLERANCE?
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For knowledge bases other than binary systems and with more than two hypotheses in rules, an
alternative illustration is proposed.  An incidence matrix, with rule numbers as values, is
developed.  The rules are clustered using their commonality of hypotheses and conclusions.
The clusters are then ordered so that the bandwidth of the incidence matrix is minimum.  Within
a cluster, the hypotheses are placed before the conclusions.  Figure 10 shows the final incidence
matrix for KB1.  Note that the partitions are evident.  There are three sub-matrices found in the
lower triangle of the incidence matrix.  They are the smallest matrices which include all
variables of a cluster.
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DO YOU BUY
LOTTERY TICKETS?

DO YOU CURRENTLY
OWN STOCKS?

DO YOU OWN
A BOAT?

DO YOU OWN
A LUXURY CAR?
RISK
TOLERANCE?

DISCRETIONARY
INCOME EXISTS?
INVESTMENTS

 NO 
YES
 NO 
YES

NO
YES
NO

YES
LOW

HIGH
NO

YES
STOCKS

BANK ACCOUNT

L1
L2

C1
C2 

D1
D2

S1
S2 
B1
B2 

R1
R2 

I1 
I2 

L1

S1

L2

S2

B1 

C1

B2        

 R1

 D1

L2
R2 

D2 

L1

LEGEND
AND
ORC2 

Another method of representing a knowledge base is the petri-net method.  Each variable is given
a name,  and each value, a digit.  For example, the variable “Do you buy lottery tickets?” is
assigned the letter “L”,  and the values “no” and “yes”, “1” and “2”, respectively.  For example,
the hypotheses “Do you buy lottery tickets?”=“no” is assigned to variable “L1”.  In Figure 11, a
table in the upper left corner lists the correspondence between the hypotheses and the variables for
the knowledge base KB1.  There are also two graphical representations of KB1.  The upper one
relates the variables without details of the logical syntax.  The lower one provides those details.
The dashed line indicates that the hypotheses are subjected to logical operator “or”, and a solid
line, “and”, as shown in the legend.

Figure 11
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CASE STUDIES OF COMPLETENESS AND CONSISTENCY

The partition {R3,R4} of KB1 is used to illustrate the concept of completeness and consistency.
In cases other than the first one, the two rules are modified by changing either the logical
operator or the conclusions.

CASE  1:  Complete and consistent subsystem

YES

NO YES

NO

DO YOU BUY
LOTTERY TICKETS?

DO YOU CURRENTLY 
OWN STOCKS? RULE 3:

DO YOU BUY LOTTERY TICKETS?=YES
OR

DO YOU CURRENTLY OWN STOCKS?=YES
THEN

RISK TOLERANCE=LOW

RULE 4:
DO YOU BUY LOTTERY TICKETS?=NO

AND
DO YOU CURRENTLY OWN STOCKS?=NO

THEN
RISK TOLERANCE=HIGH

3 4

RISK
TOLERANCE?

LOW HIGH

FIGURE 1

A

B

NOT B 

DO YOU BUY
LOTTERY TICKETS?

DO YOU CURRENTLY 
OWN STOCKS?

COMPLETENESS CHECK FOR SUBSYSTEM
LOW OR HIGH
(A OR B) OR (NOT A AND NOT B)
(A OR B OR NOT A) AND (A OR B OR NOT B)
TRUE AND TRUE
TRUE
COMPLETE

3 4

RISK
TOLERANCE?

LOW HIGH

NOT A

FIGURE 2

DO YOU BUY
LOTTERY TICKETS?

A

B

NOT B 

DO YOU CURRENTLY 
OWN STOCKS?

CONSISTENCY CHECK FOR SUBSYSTEM
LOW AND HIGH
(A OR B) AND (NOT A AND NOT B)
(A AND NOT A AND NOT B) OR (B AND NOT A AND NOT B)
FALSE OR FALSE
FALSE
CONSISTENT

3 4

RISK
TOLERANCE?

LOW HIGH

NOT A

FIGURE 3
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CASE 2:  Incomplete but consistent partition

All Hoffman regions are assigned to a unique rule.  The results of the formal procedure for
checking completeness and consistency are shown in figures 2 and 3.  In both checks, the
procedures starts at the conclusions.  A logical expression is built-up with all possible values of
the variables in the conclusions.

RULE 3:
DO YOU BUY LOTTERY TICKETS?=YES

AND
DO YOU CURRENTLY OWN STOCKS?=YES

THEN
RISK TOLERANCE=LOW

RULE 4:
DO YOU BUY LOTTERY TICKETS?=NO

AND
DO YOU CURRENTLY OWN STOCKS?=NO

THEN
RISK TOLERANCE=HIGH

YES

NO YES

NO

DO YOU BUY
LOTTERY TICKETS?

DO YOU CURRENTLY 
OWN STOCKS?

3 4

RISK
TOLERANCE?

LOW HIGH

FIGURE 4

The logical operator in rule 3 was changed from an “or” to an “and”.  Two Hoffman regions are
without rule assignment shown by blank patterns.  This partition has an incomplete set of rules.

COMPLETENESS CHECK FOR SUBSYSTEM
LOW OR HIGH
(A AND B) OR (NOT A AND NOT B)
(A AND B OR NOT A) AND (A AND B OR NOT B)
TRUE AND TRUE
TRUE
COMPLETE

DO YOU BUY
LOTTERY TICKETS?

DO YOU CURRENTLY 
OWN STOCKS?

3 4

RISK
TOLERANCE?

LOW HIGH

FIGURE 5

A
NOT A B

NOT B

DO YOU BUY
LOTTERY TICKETS?

DO YOU CURRENTLY 
OWN STOCKS?

3 4

RISK
TOLERANCE?

LOW HIGH

FIGURE 6

CONSISTENCY CHECK FOR SUBSYSTEM
LOW AND HIGH
(A AND B) AND (NOT A AND NOT B)
FALSE
CONSISTENT

NOT B

B
NOT A

A
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RULE 3:
DO YOU BUY LOTTERY TICKETS?=YES

OR
DO YOU CURRENTLY OWN STOCKS?=YES

THEN
RISK TOLERANCE=LOW

RULE 4:
DO YOU BUY LOTTERY

TICKETS?=NO
OR

DO YOU CURRENTLY OWN
STOCKS?=NO

THEN
RISK TOLERANCE=HIGH

DO YOU BUY
LOTTERY TICKETS? DO YOU CURRENTLY

OWN STOCKS?

43

YES

NO YES

NO

RISK
TOLERANCE?

LOW

HIGH

The logical operator in rule 4 was changed from an “and” to an “or”.  Two Hoffman regions are
assigned to two distinct rules shown here by an overlap in the hatch patterns.  The partition has an
inconsistent set of rules.

CASE 3:  Complete but inconsistent partition

Figure 7

DO YOU BUY
LOTTERY TICKETS?

DO YOU CURRENTLY
OWN STOCKS?

43

A

NOT A B

NOT B

RISK
TOLERANCE?

LOW

HIGH

Figure 8

COMPLETENESS CHECK FOR SUBSYSTEM
LOW OR HIGH
(A AND B) OR (NOT A AND NOT B) 
TRUE
COMPLETE
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CONSISTENCY CHECK FOR SUBSYSTEM
LOW AND HIGH
(A OR B) AND (NOT A OR NOT B)
(A OR B  AND NOT A) OR (A OR B AND NOT B) 
TRUE OR TRUE
TRUE
INCONSISTENT

3 4

A

NOT A B

NOT B

DO YOU BUY 
LOTTERY TICKETS?

DO YOU CURRENTLY
OWN STOCKS?

RISK
TOLERANCE? HIGH

LOW

Figure 9

CASE 4:  Rules that can be lumped

The consequent in rule 4 was changed to be the same as the one for rule 3.  The two rules are
consistent, but they should be lumped into one.

3 4
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NO YES
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DO YOU BUY 
LOTTERY TICKETS? DO YOU CURRENTLY

OWN STOCKS?

RISK
TOLERANCE? HIGH
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Figure 10

RULE 3:
DO YOU BUY LOTTERY TICKETS?=YES

OR
DO YOU CURRENTLY OWN STOCKS?=YES

THEN
RISK TOLERANCE=LOW

RULE 4:
DO YOU BUY LOTTERY TICKETS?=NO

AND
DO YOU CURRENTLY OWN STOCKS?=NO

THEN
RISK TOLERANCE=LOW
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ILLUSTRATIONS FOR PARTITIONING OF KNOWLEDGE BASE 1

The concept of relations was introduced in chapter 7.  It is applied to KB1 to determine its
subsystems.  Each subsystem can be represented by a function which has a domain and a range
shown in figure 1 for the subsystem “Risk Tolerance ”.

In figure 2, the immediate dependency relations of variables on variables are shown by
connections.  In order to identify the clusters of variables of each subsystem, an  algebric
procedure was defined.  First, two relations are input:  1) the immediate dependency of rules on
variables (shown in figure 3), and 2) the immediate dependency of variables on rules shown in
figure 4).
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The terms left blank in the matrix are zero.  The
product of matrix A from figure 3 and matrix B
from figure 4 is called matrix C, shown in figure
5.  If subjected to a boolean operation, its non-
zero terms become unity.  It corresponds to all
connections in figure 2.

In figure 5, the immediate dependency relation
matrix is shown prior to the boolean operation.
The composition of this relation may be btained
by multiplying matrix C by itself.  Figure 6
shows the result as matrix D.  It corresponds to
the connection shown in solid line in figure 7,
remembering that the composition operation
provides all possible paths to an output from the
inputs.
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The dependency relation is the union of the immediate dependency relation and the composition
operation.  It is shown in figure 8 and 9.
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